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Abstract

Research scientists and medical professionals use imaging technology to measure a wide variety of
biological and physical objects. The increasing sophistication of imaging technology creates demand
for equally sophisticated computational techniques to analyze and visualize the image data. Diderot
is a domain-specific programming language for scientific visualization. Diderot supports a high-level
model of computation based on continuous tensor fields. These tensor fields are reconstructed from
discrete image data using separable convolution kernels or from applying differentiation on fields.
Diderot’s surface language is similar to its mathematical counterpart. For example, the tensor and
field operations ∇, ·,~ are supported in Diderot.

The current direct-style Diderot compiler is limited by the type of operations it supports. We
developed an index notation called “EIN”, which is based on index notation but the syntax details
are specific to our needs. To address these compiler limitations, we introduce the design and im-
plementation of EIN notation in the Diderot compiler. EIN notation is inspired by Einstein index
notation with some extensions to represent the algorithms used in image analysis. The notation
allows a concise and expressive way to represent a diverse set of tensor and field operations. We ex-
tend the operations supported in the surface language while providing the basis for more operations.
The mathematically well-founded compiler can do index-based optimizations supported by tensor
calculus to find algebraic identities and simplification, and do domain-specific optimizations.
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Chapter 1

Introduction

Research scientists and medical professionals use imaging technology for a wide variety of physi-
cal objects, creating a need for software tools to extract structure and knowledge from the data.
That data can represent the underlying biological system. Imaging technology includes computed
tomography (CT) and magnetic resonance imaging (MRI), and the hardware can show images of
vectors and tensors that represent organs, tissues, brain tissue, and blood flow. The quantity and
type of data, however, are not supported optimally by the current tools for image processing.

Diderot is a domain-specific programming language created for scientific visualization and image-
analysis that targets applications with large independent sub computations [7]. Many algorithms
used for scientific visualization have a large number of independent sub computations, and these
techniques require a large quantity of data and computations. Furthermore, scientists may not
have the programming knowledge to create an efficient parallel implementation of such techniques.
The Diderot language is designed to simplify the parallel methods and allows scientists to develop
their own images analysis and visualizations. It also improves performance by supporting efficient
execution, especially on parallel platforms.

Diderot supports math notation for computing tensors and fields by providing the ingredients for
such operations. Tensors are scalars, vectors, matrices, and outputs to evaluated fields. Applica-
tions for Diderot include fiber tractography, particle systems, volume rendering and edge detection.
The language improves programmability because of the high level of mathematical programming
notation. Additionally, the conceptual transparency of the math involved could be useful for an
education context.

Several domain-specific languages exist that provide a similar array of support for scientific com-
puting. Surface language support for common operations allows the programmer to focus on math-
ematical functions and the compiler to generate code. Spiral is a DSL created for digital signal
processing in [18]. TCE is a tensor contraction engine used to represent quantum chemistry in [1].
OptiML is a DSL written for machine learning that utilizes Delite in [24]. Shadie is a DSL for
volume visualization in [14]. Some of these DSLs are discussed further in the related works section.

This paper makes several contributions. First, it introduces EIN expressions that are used in the
inter representation of the Diderot compiler. This compact notation can help support a larger array
of tensor and field operators, and also provide the mathematical basis for more but implementing
a new design can provide some challenges. We cover the techniques used to do optimizations based
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on tensor calculus, which can make the compiler mathematically well-founded.

In Chapter 2, we present the Diderot program structure and design, the mathematical founda-
tion of image-analysis, an overview of the compiler, and standard index notation. Chapter 3 will
introduce EIN expressions, demonstrate some advantages, and map the surface language to EIN
operators. Chapter 4 will walk through the implementation of EIN expressions in the compiler,
optimization techniques, and reconstruction of fields. Chapter 5 will cover code generation limita-
tions, design, and plans. Chapter 6 will discuss related work, Chapter 7 describes future plans and
Chapter 8 is the conclusion.
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Chapter 2

Background

This chapter provides the background needed for this paper. Section 1 will review the Diderot
programming language, the type system, computational notation, program structure and paral-
lelism [7]. Diderot computes operations on continuous tensor fields and supports a variety of tensor
operations. We plan to represent these tensor and field operations with an index-inspired notation
in the compiler. Section 2 maps the formal definition of tensor and field operators to Einstein index
notation. Section 3 offers an overview of the Diderot compiler as well as its limitations Section
4 provides the mathematical background for the reconstruction of fields and the differentiation of
fields.

2.1 Diderot

Diderot is a parallel domain specific programming language for scientific visualization and image
analysis. Diderot targets applications that require a high intensity for many independent subcom-
putations. Diderot uses C-like syntax on the surface language to represent mathematical types and
operators. This section explores the type system, computational notation and program model.

2.1.1 Types

Diderot supports key types that are needed to express scientific visualization algorithms. The basic
concrete values include strings, Booleans, integers and tensors. The type tensor[σ] is a tensor with
the shape σ. The order of the tensor is the length of σ (i.e., the number of dimensions). A 0-order
tensor and a 1-order tensor are specified as tensor[] and tensor[d] respectively. Common tensor
types such as 0-order tensors (or scalars) and 1-order tensors (or 2-d,3-d vectors) can be referred
to as real, vec2, and vec3.

Diderot provides three different abstract types: images, kernels, and fields. An image(d)[σ] has
dimension d and shape σ. The image type represents image data. A kernel#k is used to define
continuous reconstruction on discrete data. Kernels are referred here in terms of their continuity
class Ck where k is the number of continuous derivatives. Diderot provides references to kernels
in the surface language. Some kernels include Tent, a class C0 kernel, Catmull-Rom cubic spline
“ctmr”, a class C1 kernel, and “cubic B-spline3”, a class C2 kernel. Computations directly on
images and kernels are unsupported. A field is an abstract representation of functions from vector
space to tensors. Fields are defined in the surface language as the convolution between an image
and a kernel. Fields#k(d)[σ] represents a continuous tensor field. k is the number of continuous

6



1 field #1(2)[] f = ctmr ~ load(‘‘ddro.nrrd ");

2
3 strand sample (int ui , int vi) {

4 output vec2 pos = · · ·;
5 // set isovalue to closest of 50, 30, or 10

6 real f0 = 50.0 if f(pos) >= 40.0

7 else 30.0 if f(pos) >= 20.0

8 else 10.0;

9 int steps = 0;

10 update {

11 if (! inside(pos , f) || steps > stepsMax)

12 die;

13 vec2 grad = ∇f(pos);
14 vec2 delta = // the Newton -Raphson step

15 normalize(grad) * (f(pos) - f0)/| grad|;

16 if (| delta| < epsilon)

17 stabilize;

18 pos = pos - delta;

19 steps = steps + 1;

20 }

21 }

Figure 2.1: Detecting isocontours

derivatives for the d-dimensional field with shape of the range σ. A field is a function that maps
d-dimensional shape to a tensor with shape σ.

2.1.2 Computational notation Tensor and Field Expressions

Diderot supports mathematical notation for computing tensors and fields. The syntax uses Uni-
code characters to represent constants like π. Tensor manipulations include vector norm |u| and
transpose(u). Operations between tensors include basic arithmetic operations, addition, subtrac-
tion, and division. Additionally, Diderot supports the product between tensors such as the inner
product u · v, double dot product u : v, cross product u× v, and outer product u⊗ v.

Diderot supports various operations on continuous tensor fields. Field values are evaluated by
convolving image date with kernel. Convolution is supported as img ~ bspln3. A subset of tensor
operations are lifted to work fields, such as addition, subtraction, division, and scaling. Diderot
supports the differentiation of fields. The direct-style compiler supports ∇ (scalar fields) and ∇⊗
(higher-order tensor fields). The probing of a field at a point is represented as F (x). There are
also tests to see if a point x lies within the domain of a field (inside(x,F)). Section 2.2.2 provides
the mathematical basis for how to evaluate the probing and the differentiation of fields.

2.1.3 Program Structure

This section is the overview of the computational model. A Diderot program is implemented by
three sections: global definitions, strand definitions and the initialization. Figure 2.1 is an example
of Diderot code to detect isocontours.
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Global definitions

Global declarations have global values, fields and inputs to the program. These variables are
readable by all strands and are not mutable. An input variable can be set outside the program and
have a default values. The Diderot compiler synthesizes code and allows command-line setting of
input variables. The load function is only used in this section of the program. The load operator
gets the image data at the location indicated and the type of the img is checked when the image is
loaded. The compiler maps the image values to reals. Global variable field F (line 1) is defined with
convolution of kernels and images. In this case, a Field is created from the image at “ddro.nrrd ”
and kernel ctmr.

Strands

A strand definition is defined in the computational agents that implement the program. The strands
maintain the computational core of the application. Each stand has parameters, a state and an
update method. A strand has its own independent state, either active, stable, or dead, and never
sees the state of another strand. The update method is called only when the strand is active. A
strand can also have a stabilize method that offers conditions for stability. Otherwise, a strand
stabilizes when it is available and not going to change. The methods can include local variables
with scoping rules that are similar to C’s. Some strand variables have output variables which report
the strands state at the program’s output.

Diderot targets algorithms that use a large number of independent computations. The update
method for each strand is in lines 10-line 20 in Figure 2.1. Each strand updates its position using
a Newton-Raphson step. If the position is outside the field or has taken the maximum number of
steps, then the strand dies(line 11-line 12). If the Newton-Raphson step is less, then some epsilon
than the strand stabilizes (line 16-line 17). Otherwise the strand stays active.

Line integral convolution(LIC) as described in [6] is another visualization technique that requires
a large number of computations. This technique attempts to visualize a vector field by blurring a
noise texture. Streamlines are paths everywhere tangent to the vector field, computed by numerical
integration. For each pixel in the output, we define a strand that computes a streamline. Diderot
assigns one strand per path in fiber tractography algorithms and one strand per ray in volume
renders.

Initialization

The initialization section of the program defines the initial set of strands. The set of strands are
initialized with parameters at the start of the program. The comprehension syntax is similar to
Haskell or Python. A grid of values can also be specified by using a “[]” and the structure is
preserved in the output.

2.1.4 Parallelism Model

Diderot uses a bulk synchronous parallelism model as mentioned in [22]. At each iteration, all the
strands execute in one step. During the step, each strand’s update method is called. There may
be some time between the end of a strand’s update computation and the next step. At the end
of the step, each strand either stabilizes or dies. Diderot only looks at the state of each strand at
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execution
step

strands

update

idle

read

spawn

global computation

global computation

strand state

new

die

stabilize

Figure 2.2: Diderot Parallelism Model

the beginning of the next step. When all the strands stabilize or die then there are no more steps
taken.

2.1.5 Examples

Figure 2.3 is an example of curvature code. Curvature is a physical property that computes the
change in normal due to motion along the surface. The technique requires computations on derived
fields, differentiation of fields, and tensor operations.
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1 field2 (3)[]# F = bspln3 ~ load(a.nrrd);

2 field0 (2)[3] RGB = tent ~ load(xfer);

3 · · ·
4 update {

5 · · ·
6 vec3 grad = -∇F(pos);
7 vec3 norm = normalize(grad);

8 tensor [3,3] H = ∇⊗∇F(pos);
9 tensor [3,3] P = identity [3] - norm⊗norm;

10 tensor [3,3] G = -(P•H•P)/| grad|;
11 real disc = sqrt (2.0*|G|^2 - trace(G)^2);

12 real k1 = (trace(G) + disc )/2.0;

13 real k2 = (trace(G) - disc )/2.0;

14 // find material RGBA

15 vec3 matRGB =

16 RGB([max(-1.0, min(1.0, 6.0*k1)),

17 max(-1.0, min(1.0, 6.0*k2 ))]);

18 · · ·
19 }

Figure 2.3: Computing the surface color based on implicit surface curvatures
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2.2 Einstein Index Notation

Diderot surface language operators can be represented in index notation. Diderot presumes an
orthornormal basis, which allows us to take advantage of certain identities. It is necessary to
refer to the components of tensors for these identities. Section 2.2.1 will introduce Einstein index
notation for basic tensor and field expressions, and Section 2.2.2 will review concepts supported by
an orthonormal basis. Then, Section 2.2.3 and 2.2.4 present various tensor operators and higher-
order field operators in index notation. The paper uses the following notation

u,v,and w Vectors T,A, and B General Tensors

ϕ Scalar Field F,G General Fields

Mij Index Notation

2.2.1 Index Notation

Einstein index notation or the summation convention can be used to concisely describe tensor
and field operations. The subscripts are denoted with lower-case letters ijk. An index is either a
summation index or a free index. Each are bound over a range. Consider the expression for 3-by-3
matrix M,

M ij =

 M00 M01 M02

M10 M11 M12

M20 M21 M22


Indices i, j are free indices. A dummy index is repeated exactly twice and has an implicit summation
over of an index. Consider the expression,

Mii = M00 +M11 +M22

Index i is a summation index. A multi-index, or a list of indices is denoted with α, µ, ν. Tα can be
a tensor of any arbitrary shape, including M.

The relationship between the indices can also be expressed with Eijk and δij . Eijk is used when
computing the tensor product between tensors and the Curl. The δij expression stands for the
kronecker delta function. It can be used when defining the identity.

Eijk =


1 cyclic

−1 anti-cyclic

0 otherwise

and δij =

{
1 i=j

0 otherwise

Two epsilons in an expression with a shared index can be rewritten to deltas.

EijkEilm =⇒ δjlδkm − δjmδkl (2.1)

A δij expression can be applied to tensors, fields, and the del operator.

δijTj =⇒ Ti δijFj =⇒ Fi ∇jδij =⇒ ∇i (2.2)
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2.2.2 Orthornormal basis

Let us define an orthonormal basis β with unit basis vectors as bi, bj , ... The following properties
can be found in [15]. Each basis vector is linearly independent and normalized such that

bi · bj =

{
1 i=j

0 otherwise
(2.3)

bi · bj = δij (2.4)

Specifically, for a 3-d space we have

bi × bj = Eijkbk (2.5)

Then any vector u can be defined by a linear combination of these basis vectors and have the
following properties.

u = Σiuibi (2.6)

u · bj = uj (2.7)

A matrix can be expressed as

Aij = bi ·Abj (2.8)

Any tensor of order or rank can be expressed as

Ai1,i2,..inbi1 ⊗ bi2 ⊗ ..⊗ bin (2.9)

2.2.3 Tensor Operations

Simple tensor operators such as scaling and addition are described in Figure 2.4.

Surface Language Index Representation

-A −Aα
A+ B Aα +Bα
A- B Aα −Bα
s* A sAα
A/s Aα

s
Identity δij
Trace(A) Aii

Figure 2.4: Simple Tensor Operators in Index Notation

This section will illustrate examples of tensor operators (·, :,⊗,×) in index notation. Figure 2.5
summarizes these operators. Some additional properties for tensors are as follows

(u⊗ v⊗w) : (x⊗ y) = (v · x)(w · y)u (2.10)

(u⊗ v)w = u(v ·w) (2.11)
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Tensor Product [A⊗B]β
The components of the tensor product between two vectors A and B can be defined along their
orthonormal basis β as

bi · (A⊗B)bj

Using properties provided by eqns (11,7), we find that

bi ·A(B · bj)

(bi ·A)Bj

AiBj

The tensor product is expressed in index notation as AiBj

Cross Product [A×B]β
This operation can be written as

ΣijAibi ×Bjbj
=⇒ ΣijAiBj(bi × bj)

With eqn (5) and an even permutations of (i,j,k) we find that

=⇒ ΣijAiBj(Eijkbk)

=⇒ ΣjkAjBkEjkibi
The Cross product is written in index notation as EijkAjBk

Inner Product [A ·B]β
The dot product between two vectors is described as

Aibi ·Bjbj
Taking advantage of property (4,2) we find that

=⇒ ΣijAiBjbi · bj

=⇒ ΣijAiBjδij

=⇒ ΣiAiBi

The dot product is expressed in index notation as AiBi

Generally, the inner product is expressed as AµiBiν
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Double-dot Product [A : B]β
This example illustrates the double-dot product with third-order tensor A and a second-order ten-
sor B. With properties (10, 4, 2) we find that

ΣijklmAijkBlm(bi ⊗ bj ⊗ bk) : (bl ⊗ bm)

=⇒ ΣijklmAijkBlm(bj · bl)(bk · bm)bi

=⇒ ΣijklmAijkBlmδjlδkmbi

=⇒ ΣijkAijkBjkbi

The double-dot product is written in index notation as AµjkBjkν

Surface Language Index Representation

A · B AµiBiν

A : B AµijBijν

A⊗B AiBj

A×B EijkAjBk

Figure 2.5: Tensors Operations

2.2.4 Field Operators

A field can be written as F or G, and a scalar field with ϕ. In Diderot, a subset of tensor operators
have been lifted to work on fields. A selection of those are shown in index notation in Figure 2.6.
Diderot supports four basic differentiation operations;(∇,∇·,∇×,∇⊗). This section will map the

Fields

Surface Language Index Representation

s+F s+ ϕ
F-s ϕ− s
-F −Fµ
F+G Fµ + Gµ

F-G Fµ −Gµ

s*F sFµ
F
s

Fµ
s

Figure 2.6: Tensor Operators on Fields

formal definition of these operators to index notation. Figure 2.7 summarizes the representation of
these operations in index notation. Mathematicians and physicists define differentiation with the
following set of equations [15, 16]

[∇φ]β = Σi
∂

∂xi
φ bi (2.12)

[∇ · f ]β = Σi
∂

∂xi
f · bi (2.13)
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[∇× f ]β = Σibi ×
∂

∂xi
f (2.14)

[∇⊗ f ]β = Σi
∂

∂xi
f ⊗ bi (2.15)

Gradient [∇φ]β
As described in equation (12) Σi

∂
∂xi
φ bi

By definition of basis vectors, we can expand this expression

[
∂

∂x1
φ,

∂

∂x2
φ, ..]

The index notation representation of the Gradient is ∂
∂xi
φ.

Divergence [∇ · F]β
Consider a vector field u in equation (13) by using properties (4,2).

=⇒ Σij
∂

∂xi
uj bj · bi

=⇒ Σij
∂

∂xi
uj δij

=⇒ Σi
∂

∂xi
ui

This is written in index notation as ∂
∂xi

Fi.
Generally, we can express a tensor field A with shape [αi, αj ..αn,k] with

Σα,kAαiαj ....αnkbαi ⊗ ..⊗ bαn ⊗ bk
in equation (13) as

=⇒ Σα,k,l
∂

∂xl
(Σij..nAαi...αnkbαi ⊗ ..⊗ bαn ⊗ bk)bl

=⇒ Σα,k,l
∂

∂xl
(Σij..nAαi...αnkbαi ⊗ ..⊗ bαn(bk · bl)

=⇒ Σα,k,l
∂

∂xl
(Σij..nAαi....αnkbαi ⊗ ..⊗ bαn(δkl)

=⇒ Σα,k
∂

∂xk
(Σij..nAαi...αnkbαi ⊗ ..⊗ bαn

This is written in index notation as ∂
∂xk

Fαk.
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Curl [∇× F]β
Consider property (5) with vector field u and equation (15) becomes

=⇒ Σijbi ×
∂

∂xi
uj bj

=⇒ Σij
∂

∂xi
uj bi × bj

=⇒ Σij
∂

∂xi
ujEijkbk

Using tmp variables i =⇒ n =⇒ j, j =⇒ o =⇒ k, and k =⇒ m =⇒ i

=⇒ Σij
∂

∂xj
ukEjkibi

The 3-d Curl is written in index notation as ∂
∂xj

FkEijk.

Higher-order differentiation [∇⊗ F]β
Equation (15) describes this operation for a generic field f

Σi
∂

∂xi
f ⊗ bi

This operator on a vector field is written as

Σij
∂

∂xj
fi bi ⊗ bj

The general representation of a tensor field in equation (15) can be expressed as

Σαk
∂

∂xk
(ΣαAαiαj ....αnbαi ⊗ ..⊗ bαn)⊗ bk

In index notation we can generally represent the shape of field f with α. This operation is written
in index notation as ∂

∂xk
Fα.

Fields

Surface Language Index Representation

∇F ∂
∂xi
ϕ

∇ · F ∂
∂xi

Fαi
∇⊗ F ∂

∂xi
Fα

∇× F ∂
∂xj

FkEijk

Figure 2.7: Differentiation Operators in index Notation
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2.3 The Diderot Compiler

2.3.1 Current Organization of the Compiler

The compiler is organized into three different “phases”. They are referred to as the front-end, op-
timization and lowering, and code generation. The front-end level includes parsing, type checking
and simplification. The optimization and lowering phase includes three intermediate representa-
tions: High-IL, Mid-IL and Low-IL. Finally, the code generation phase produces block structured
code. Figure 2.8 illustrates the organization of the compiler and the optimization and lowering
phase is highlighted.

Front-End Code 
Generation

High-IL

Mid-IL

Low-IL

Figure 2.8: Diderot Compiler Organization

2.3.2 How it Currently Works

The front-end phase scans and parses the Diderot source program. The type-checker forms the parse
tree to a typed AST representation. Most of the operators supported in Diderot have instances
of multiple types. For example, the addition operator is used between integers, reals, tensors and
fields. An addition operator for each type of tensor and field would be overly complicated. Instead,
the type checker has polymorphic operators that can work on arbitrary size tensors and fields.
At the end of the type checking process, the operators have specific monotypes. The typed AST
representation produces the Simple AST representation. At the end of this phase, operators are
applied only to variables and temporary values are created.

The next phase is the optimization and lowering that has three intermediate representations. Each
intermediate representation has a block-structured Static Single Assignment representation and
has the same control-flow graph(CFG) [9], but they differ in a few ways. Each representation has
its own types, operations, and optimizations. The transition between the representations creates
lower-level operations from their counterparts.

High-IL is the first intermediate representation in the lowering and optimization phase. The
High-IL optimizations lift static computations to a global level and eliminate dynamic field, kernel
and image values. The differentiations of fields is pushed down to the kernels.

Mid-IL supports a different representation of fields. In the transitions of High-IL to Mid-IL, the
fields and probes are compiled away into lower-level code. The Mid-IL representation supports
transformation between world-space to image-space positions, loading voxels from images, and
evaluating kernels. Higher-order tensors are flattened. Mid-IL operators expand kernel evaluation
into their piecewise polynomial equivalent and expand the address calculation for voxel addresses.
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Low-IL supports basic vector and scalar operations and memory objects.

Finally, Low-IL is translated to Tree-IL in the code generation phase. This process turns SSA
assignment into expression trees and turns the CFG into block structured code. Separate backends
are created to work for different target interfaces which includes sequential C code with vector
extensions, parallel C code, OpenCL, and CUDA. The target representation is used to augment
the code with type definitions and runtime support. The output is passed to the host system’s
compiler.

2.3.3 Limitations

The direct-style notation used in the compiler can provide some challenges in expressing operations.
The compiler represents a fixed set of operators. There are several desirable operations that the
direct-style compiler does not support such as ∇×, and ∇·. Adding support for these operators
requires a number of intermediate operators. Each additional field operator requires a case-by-case
analysis in order support necessary field normalization.

The Diderot surface language has a promise of generality that is not supported by the imple-
mentation. The compiler only supports a subset of shapes for tensor operators. To illustrate this
consider the inner product. The Direct-Style operators for the inner product include “dot”, “Mul-
VecMat”, “MulMatVec”, “MulMatMat”,“MulVecTen3”, “MulTen3Vec.” The compiler could not
compute the inner product between higher-order tensors, because it lacks the representation.
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2.4 Image Analysis

Tensor fields are defined by reconstruction of discrete image data with separable kernels. Fields
combine kernels and discrete data to create smooth tensor fields over continuous world-space ab-
stract functions that are evaluated at any location to produce a tensor. Fields are functions from
Rd to tensors. The continuous fields are important because of the features that lie between pixels.

Section 2.4.1 introduces the notation used to describe the reconstruction of fields. Section 2.4.2
examines the reconstruction of fields from image data and kernel and explore the process that
allows Diderot to lift tensor operations to work on fields. Section 2.4.3 will provide mathematical
background for the differentiation of fields. The existing design in Diderot supported one type
of differentiation of fields. This section introduces support for other higher order field operators,
which ultimately expands the type of operations supported in the surface language.

2.4.1 Notation

Diderot describe Fields in terms of their domain range, and continuity of function. A field is defined
as an image convolved with a kernel. In this section, we define the terms “pure fields” and “derived
fields”. A pure field is simply a field reconstructed with an image and kernels. A derived field is a
field created as a result of field operations. Section 2.2 introduced the notation used to write fields
directly and differentiation operations in index notation. In order to represent field reconstruction,
we introduce several new expressions in the table below.

W world-space
I image-space
V image data
p position in W
x position in I
n integer position of x
f fraction position of x
h kernel
s support of h

M−1 transform matrix from W to I
P transform matrix from I to W

An image is discrete data that is sampled across a regular grid. An image is denoted with V. Kernels
are independent of data. A piecewise polynomial kernel is represented with h and support with s.
The first differentiation of a kernel is represented with h′. A field is probed in the surface language
at a world-space position p. M−1 is the transformation matrix from world-space to image-space.
The world-space position p is transformed into an image-space position x. The reconstruction of
the field is represented with the integer and fraction position of x. If differentiation is used then
we use transform matrix P, where P=[M−T ]IW

This section introduces differentiation on reconstructed fields. The examples need to refer to
specific components on fields. For that purpose, we denote a specific axis or component with an
underline. For instance, a 3-d vector field F can be referred to directly in index notation or by it’s
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components as

F =⇒ Fi =⇒

 F0

F1

F2

 .
The differentiation expression ∂

∂xi
is used in every index notation differentiation expression. When

illustrating specific components, this expression can get cluttered. For this purpose, we define
constants (x, y,z) to represent a specific partial derivative. For a 3-d space, the specific components
of the partial derivative can be expressed as

∂

∂xi
=⇒ ∂

∂x0
,
∂

∂x1
,
∂

∂x2
=⇒ ∂

∂x
,
∂

∂y
,
∂

∂z

The upper subscript denotes the level of differentiation.

∂

∂x2
1

=⇒ ∂

∂y2

2.4.2 Reconstruction of Pure Fields

A field application gets compiled down into code where world-space coordinates are mapped to im-
age space. Then, the image-space convolves the image values in the neighborhood of the position
as shown in Figure 2.9. Reconstructing continuous signals from discrete data could involve linear
interpolation or convolution with more complicated kernels. This section will show the reconstruc-
tion of pure fields. Probing a field produces a tensor, which is the shape of the range of the image

Continuous fieldDiscrete image data

FV ⊛h
x

M�1

n

Figure 2.9: Probe of a scalar field

field. The neighborhood of positions will range from 1-s to s, where s is the support of the kernel.
This section looks at the reconstruction of a 1-D scalar field and a 2-D vector field.

Scalar field A 1-D scalar field is written in Diderot syntax as

field#k(1)[] ϕ = V ~ h;
real s= ϕ(p);

The first step is to transform the world-space position to image-space.[
x
1

]
= M−1

[
p
1

]
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Take the integer and fractional position as

n = bxc

f = x− n

The probe is expanded as
=⇒

∑s
i=1−s V(n + i)h(f− i)

The kernel is represented as a piecewise polynomial with 2s segments. It is computed from 1 − s
to s. If the position is outside that range the kernel polynomial is computed to zero.

Vector field A 2-D vector field is written in the Diderot syntax as

field# k(2)[2]F = V ~ h;
tensor [2] t= F (p);

We transform the world-space position p to image space position x as

x = M−1p

n = bxc

f = x− n

The field is expanded as

=⇒
[ ∑s

ij:1−s V1([n + i,n + j]) h(f− i)h(f− j)∑s
ij:1−s V2([n + i,n + j]) h(f− i)h(f− j)

]

2.4.3 Reconstruction of Derived Fields

A derived field is created when operations are applied to fields. When a tensor operator is lifted
to operate on a derived field then the expansion is much like it is shown in the previous section.
The probed fields are evaluated to a tensor result, and then the arithmetic operations are used. In
applications such as edge detection, volume shading or curvature, the differentiation of fields would
be computed. The differentiation of fields are more complicated and are derived differently than
pure fields.

This section introduces differentiation on reconstructed fields for operators ∇,∇·,∇⊗,∇×. While
two different differentiation operations can produce the same shape, their method of computation
can be different. The resulting shape will depend on the shape of the range of the image field and
the level of differentiation. Section 2.2 provided the basis of mapping the formal definition of these
operators to index notation. Presented here is an example of each operator by specifying their
components. The differentiation operators will be introduced here in direct-style notation, index
notation, and then by representing the field components.

The ∇ operator is only used on scalar fields and produces a vector field. A 2-d expression of
the operator

∇ϕ =⇒ ∂
∂xi
ϕ =⇒

[
∂

∂x1y0

∂
∂x0y1

]
ϕ
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The ∇× operator is only used on vector fields. The resulting tensor depends on the dimension of
the field. A 3-d expression of the operator is

∇× F =⇒ ∂
∂xj

FkEijk =⇒


∂
∂yF2 − ∂

∂zF1

∂
∂zF0 − ∂

∂xF2
∂
∂xF1 − ∂

∂yF0


The ∇· operator can be used on any higher-order fields and reduces the order of the tensor field by
one. This operator can be expressed on a 2-d vector field as

∇ · F =⇒ ∂
∂xi

Fαi =⇒ ∂
∂xi

Fi =⇒ ∂
∂x1y0

F0 + ∂
∂x0y1

F1

The ∇⊗ operators can be used on any higher-order field, and increases the order of the tensor field
by one. This operator can be expressed on a 2-d field vector field as

∇⊗ F =⇒ ∂
∂xj

Fα =⇒ ∂
∂xj

Fi =⇒

[
∂

∂x1y0
F0

∂
∂x0y1

F0

∂
∂x1y0

F1
∂

∂x0y1
F1

]
The product of ∂

∂xµ
and ∂

∂xν
expressions is ∂

∂xµν
. The expression can also be evaluated by summing

the components.
∂

∂xiyj
∂

∂xi′yj′
= ∂

∂xi+i′yj+j′

The following section will show several examples using the above operators. While the intermediate
steps to reconstruct fields may differ, each example shares two common steps: the first and last.
The first step is to transform world-space position p to image-space and then to use world-space
positions n and f. The last step is to transform the result of the computation back to world-space.

When taking the differentiation of fields, the result is a value in image-space and not world-space
[16]. Therefore, the result of field differentiation must be transformed back to world-space with
transformation matrix P. A multiplication by P is needed for each index of convolution measured in
the derivatives. Consider the result of a third-order differentiation of a field, tensor Tlmn with three
indices lmn in image-space position. This requires three multiplications by matrix P expressed in
index notation as

TlmnPilPjmPkn

The first index in P is in world-space and the second index is in image-space. Generally, tensor
Tµα with indices α in image-space gets transformed back to image space by

Tµα0α1..αnPβ0α0Pβ1α1 ..Pβnαn

We show this transformation in the following two examples, Gradient and Hessian but omit in the
rest.

Gradient The Gradient is the first order-approximation of the local variation of the function, or
field itself. The Gradient of a field is used to compute the surface normal. The Gradient of a 3-d
scalar field is written in Diderot syntax as
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field#k(3)[3] ϕ = V ~ h;
tensor [3] t= ∇ϕ(p);

Expressed as
t = (∇ϕ)@p
=⇒ (V ~∇h)@p

=⇒

V ~


∂

∂x1y0z0

∂
∂x0y1z0

∂
∂x0y0z1

h
@p

Reconstructed as

=⇒


∑s

i,j,k:1−s V([n + i,n + j,n + k]) h′(f− i)h(f− j)h(f− k)∑s
i,j,k:1−s V([n + i,n + j,n + k]) h(f− i)h′(f− j)h(f− k)∑s
i,j,k:1−s V([n + i,n + j,n + k]) h(f− i)h(f− j)h′(f− k)


Transform the result back to world-space

t′ = P · t

Hessian The Hessian is a first-order approximation of the local variation of the Gradient. This
increases the order of the resulting tensor by two. The Hessian of a 2-d scalar field is written in
Diderot syntax as

Field#k(2)[] ϕ = V ~ h
tensor [2,2] t = (∇⊗∇ϕ)@

Then goes through the following derivations

t = (∇⊗∇ϕ)@p
=⇒ (V ~∇⊗∇h)@p

=⇒

(
V ~

[
∂

∂x2y0
∂

∂x1y1

∂
∂x1y1

∂
∂x0y2

]
h

)
@p

=⇒
[

ΣijV([n + i,n + j])h′′(f− i)h(f− j) ΣijV([n + i,n + j])h′(f− i)h′(f− j)
ΣijV([n + i,n + j])h′(f− i)h′(f− j) ΣijV([n + i,n + j])h(f− i)h′′(f− j)

]
There are two indices for differentiation so we multiply the result by P twice

t′ = P · t ·PT

Divergence The Divergence of a 2-d vector is written as

Field#k(2)[2] F =V ~ h
real s= (∇ · F )@p

Expressed as

t = (∇ · F )@p
=⇒ (V ~ (∇ · h))@p

=⇒ ((V0 ~ ∂
∂x1y0

h) + (V1
∂

∂x0y1
h))@p

=⇒ ΣijV0(n + i)h′(f− i)h(f− j) + ΣijV1(n + i)h(f− i)h′(f− j)
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Jacobian The Jacobian is written in Diderot syntax as

Field#k(2)[2] F = V ~ h
tensor [2,2] t = (∇⊗ F )@p

and expressed as

=⇒ (∇⊗ F )@p
=⇒ (V ~ (∇⊗ h))@p

=⇒

([
V0 ~ ∂

∂x1y0
V0 ~ ∂

∂x0y1

V1 ~ ∂
∂x1y0

V1 ~ ∂
∂x0y1

]
h

)
@p

=⇒
[

ΣijV0([n + i,n + j])h′(f− i)h(f− j) ΣijV0([n + i,n + j])h(f− i)h′(f− j)
ΣijV1([n + i,n + j])h′(f− i)h(f− j) ΣijV1([n + i,n + j])h(f− i)h′(f− j)

]
Laplacian The Laplacian takes the second derivative of a field. The Laplacian operation is
represented by a combination of basic differentiation operators. The Laplacian of a 3-d scalar field
is written as

Field#k(3)[] ϕ = V ~ h
real s = (∇ · ∇ϕ)@p

Expressed as

=⇒ (V ~∇ · ∇h)@p

=⇒
ΣijkV([n + i,n + j,n + k])h′′(f − i)h(f − j)h(f − k)

+ΣijkV([n + i,n + j,n + k])h(f − i)h′′(f − j)h(f − k)
+ΣijkV([n + i,n + j,n + k])h(f − i)h(f − j)h′′(f − k)

Discussion

Probing an arbitrary field at a position can generate complicated code. It requires nested summa-
tions that are dependent on the dimension of the fields and order/shape of the result. Additionally,
this type of computation has high arithmetic intensity. The design of the intermediate representa-
tion of this process needs to be concise and unambiguous.
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Chapter 3

Design

This chapter introduces index-inspired EIN expressions. Similar to index notation, EIN expressions
can be used to represent tensor and field operations in a mathematically sound and compact way.
The EIN expressions are designed to represent the tensor and field operations in the Diderot com-
piler. The compact representation provides an advantage over Diderot’s direct-style compiler and
are discussed in Section 3.1. The Diderot language offers operations not traditionally represented
in index notation. The notation used in EIN expressions can represent the diverse set of tensor and
field operations used in Diderot. Section 3.2 will introduce the EIN expression notation. Section
3.3 will walk through the mapping of surface language operators to EIN operators. Finally, Section
3.4 will discuss the differences between index notation (Section 2.4) and EIN expressions.

3.1 Motivation

The direct-style notation that the compiler uses to express operations on tensor and fields is limiting.
Index notation can provide a concise way of representing operations and by doing so expands the
capabilities of the compiler. A richer set of operations are supported in the surface language and a
mathematically well-founded compiler can do optimizations supported by tensor calculus.

3.1.1 Compact Notation

Diderot’s surface language makes a promise of generality that is not delivered by the current com-
piler. Operators in the existing compiler were expressed with direct-style notation. The code
generator is not general enough and can only generate code on a fixed set of tensor operations.
Therefore, even though arbitrary-sized tensors can be supported in the surface language, only a
subset of possibilities could be represented in the compiler.

Index-inspired notation gives us a way to look at the structure of tensors and fields without having
to examine the scalar computations. By using EIN operators in the compiler, we can represent
operations on arbitrary-sized tensors. The compiler can break complicated and large EIN operators
into a basic set of operations that only work on scalars and vectors. Then, it only needs to generate
code for operations between scalars and vectors avoiding the complication of creating an explosion
of shape-specific operators in the compiler.
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3.1.2 Surface Language Operators

The expressive and concise advantage provided by index notation allows for a richer set of operations
that can be supported in the surface language. For example, the previous implementation of Diderot
only supported the Gradient ∇ϕ and the Hessian ∇ ⊗ ∇ϕ. The new implementation supports
differentiation operators Divergence ∇·F , Laplacian ∇·∇ϕ , Curl ∇×F , and the Jacobian ∇⊗F .
EIN expressions also provide a mathematical basis for lifting tensor operations to work on fields
such as the dot product F ·G and tensor product F ⊗G.

3.1.3 Mathematically Well-Founded Optimizations

The representations and optimizations of index-inspired expressions are mathematically well-founded.
The notation expresses explicitly the operations on tensors and fields and has a familiarity to the
surface language. Index notation can also provide new optimization opportunities. The direct-style
compiler is limited by the rewrites it can do because a term rewrite would require a case-by-case
analysis of operators. With index notation, the compiler is smarter about tensor calculus, can also
do term rewriting based on the mathematics involved, and can find algebraic identities as a result.

3.2 EIN Expressions

An EIN Operator is an EIN expression with an outer subscript. Figure 3.1 represents EIN operators
and expressions. Section 3.2.1 describes the types of subscripts. Section 3.2.2 will introduce the
basic tensor, field, image and kernel expressions. Operations such as the differentiation of fields
and probing are not traditionally expressed in index notation and require some additional notation.
Section 3.2.3 will introduce the notation used to represent fields operations.

3.2.1 Types of Subscript

EIN expressions support two different types of indices: variable index i and constant index c
which is represented in bold. µ denotes an index and α denotes a multi-index or list of indices.
The variable index can be bounded in two different places; outside the EIN operator or by the
summation expression. Take this generic EIN operator〈∑

ν

e

〉
i

.

where iεn

A variable index bounded by the outer index ranges from 0 to n. A variable index bounded by
the summation has range ν. This allows the summation to support indices varying from 0-N in
the case of tensor operators, and over the support of a kernel. The inner product operation was
written in index notation as

AαjBjβ

and in EIN expressions with a summation symbol as

〈ΣjAαjBjβ〉αβ.

Specifically, the inner-product of a 3-by-2 matrix and a vector of length 2 is expressed as〈
Σ[0:j:1]AijBj

〉
i
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µ ::= i, j, k Index Variables
| c

¯
Index constant

α, β, η ::= ~µ Multi-index, list of indices

ν ::= [lb :: i :: ub] Summation-range

ψ ::= (c
¯
, i) Kernel differentiation

e ::= s real
| Tα Tensor
| Eijk Epsilon
| δµµ Kronecker-deltas
| Σν̄e Summation
| −e Negation
| e+ e Addition
| e− e Subtraction
| e ∗ e Multiplication
| e

e Division
| Fα Field

| ∂
∂α Derivative

| e � e Apply
| Vα ~ hα Convolution
| e(e) Probe

| ĩ Value-of-index
| Vα[ē] Index-Images

| hψ̄[e] Kernel

E ::= 〈e〉α EIN Operator

Figure 3.1: EIN operator E and EIN expression e

where iε3

A constant index c
¯

can represent a specific axis of a field or kernel. For instance, the x-direction
and y-direction of the field is expressed as F0

¯
, F1

¯
, respectfully.

The ĩ notation lifts an index variable to a constant integer.

Σn
i=0̃i = 0 + 1 + 2...n.

The Eiii and δµµ expressions act like their mathematical counterpart.

3.2.2 Basic expressions

Tensors and Fields

EIN expressions describe Tensors T and fields F similar index notation.
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Index Images

The expression Vα[ē] denotes an image field with shape α, and ē is the list of integer image-space
position(s).

Kernels

The hψ̄[e] expression represents a kernel created for a specific dimension. The kernel evaluates
at position e and the level and type of differentiation is expressed in the ψ̄. ψ̄ is a list of pairs
[(c

¯
, i1), (c

¯
, i2), ...(c

¯
, im)]. The first index is a constant index that represents the dimension of the

kernel, while the second index is a variable index created by the differentiation operator. ψ pairs
are evaluated like kronecker-deltas pairs. i.e. ψ = (c

¯
, i) = δc,i and added together.

ψc
¯
j =

{
1 c

¯
=j

0 otherwise

hψ̄ is evaluated to hk, where k is the kth derivative of the kernel. h1,and h2 are the first, and second
derivative of the kernel.

3.2.3 Field operations

Differentiation

Expressions � and ∂
∂α are used to represent field differentiation. The � operator has two arguments

that reduce to a partial and a field expression, ∂
∂α1
� Fα2 . The concise representation of differenti-

ation allows us to express a wide variety of differentiation operations and also supports index-base
optimizations on the differentiation operators.

Probe

The probe operator evaluates the field at a world-space position e(e).

Convolution

The convolution expression vα1 ~h
α2 represents the convolution of an image field v, with the range

α1 and a polynomial kernel h. This expression can represent a scalar field v~ h, and a vector field
vi ~ h. Additionally, the operator can represent the Gradient of a scalar field v~ hi, Divergence of
a vector field Σivi~hi, Laplacian of a scalar field Σiv~hi,i, and Jacobian of a vector field vi~hj .

3.3 Operators

This Section will map the Diderot surface language to EIN expressions.

3.3.1 Tensor Operators

Tensor operators in the Diderot surface language are mapped to EIN operators. Operations on
vectors include the cross product and the outer product (Figure 3.2). Operations on matrices
include the Identity matrix, trace, and transpose (Figure 3.3). Other operations supported on
tensors of arbitrary size include negation, addition, subtraction, scale, division, inner product,
double dot, and modulate (Figure 3.4). In these cases, the EIN expressions have generic subscripts
to represent the shape of their tensor arguments. The tensor types in the surface language are
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mapped to EIN subscripts in the generic operators. For example, the addition of tensors in Diderot
syntax is

tensor [σ] A;

tensor [σ] B;

tensor [σ] T = A + B;

This computation is expressed with the general EIN operator as

T = λ(A,B)〈Aα +Bα〉α(A,B)

where σ = α

Many tensor operators are written the same as they would be in index notation, including the
addition of tensors. The tensor operations that have an implicit summation in index notation will
use an explicit Σ in EIN notation. For example, the trace expressed in Diderot syntax as

tensor [m,n] M ;

tensor [] t =trace(M);

The trace operator is expressed with the general EIN operator as

t = λ(A)〈ΣνAii〉(M)

where ν = [0 : i : n] and m = n

One of the benefits of using Index notation is that we can represent a family of operators with a
concise expression. This property allows the compiler to generate the inner product and double-
dot product between tensors of arbitrary shapes as shown in Figure 3.5 and Figure 3.6. The
direct-style compiler represented the inner product · operation between tensors as several product
operators: dot product between vectors, inner product of vectors and matrices, and the inner
product of matrices. The inner product between tensors can be written in the Diderot Syntax as

tensor [σ] A;

tensor [σ’] B;

tensor [ς] T = A · B;

The inner product is expressed with the generic EIN operator as

λ(A,B)〈ΣiAαiBiβ〉αβ

where σ = α :: i, σ′ = i :: β, and ς = αβ

The type-checker infers the types to the tensor arguments and specifies the generic operator by
initializing the indices in α and β.
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Outer Product A⊗B λ(A,B)〈AiBj〉ij
Cross Product A×B 〈ΣjkEijkAjBk〉i

Figure 3.2: Operators on Vectors

Identity I λ()〈δij〉ij
Trace Trace(A) λA〈ΣiAii〉
Transpose AT λ(A)〈Aji〉ij

Figure 3.3: Operators on Matrices

Negative Tensor -A λ(A)〈−Aα〉α
Addition A+B λ(A,B)〈Aα +Bα〉α
Subtraction A-B λ(A,B)〈Aα −Bα〉α
Scale s*A λ(s,A)〈sAα〉α
Divide A

s λ(s,A)
〈
Aα
s

〉
α

InnerProduct A · B λ(A,B)〈Σi(AαiBiβ)〉αβ
Double Dot A : B λ(A,B)〈Σij(AαijBijβ)〉αβ
Modulate A�B λ(A,B)〈AαBα〉α

Figure 3.4: Operators on Tensors

Argument Index(α, β) expression

General (α, β) λ(A,B)〈Σk(AαkBkβ)〉αβ
- vector ·vector (−,−) λ(A,B)〈Σk(AkBk)〉
- matrix · vector (α,−) λ(A,B)〈Σk(AαkBk)〉α
- vector · matrix (−, β) λ(A,B)〈ΣkAkBkβ〉β
- matrix ·matrix (α, β) λ(A,B)〈Σk(AαkBkβ)〉αβ

Figure 3.5: Inner Product
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Argument Index(α, β) expression

General (α, β) λ(A,B)〈Σkl(AαklBklβ)〉αβ
- m : v (α,−) λ(A,B)〈Σjk(AαjkBjk)〉α
- v : m (−, β) λ(A,B)〈Σjk(AjkBjkβ)〉β
- m : m (α, β) λ(A,B)〈Σkl(AαklBklβ)〉αβ

Figure 3.6: Double Dot Product

3.3.2 Basic Field Operators

This section focuses on the representation of simple field operators. Basic field evaluations use the
convolution and probe operators. The representation of the convolution and probe operators in
EIN expressions have been discussed in Section 3.2. The domain of the range of the image field
is mapped to the image, and field subscript in the EIN expression. The convolution operation is
written in the Diderot Syntax as

image(d)[σ] V;

field#k(d)[σ] F = V ~ h;

and with the generic EIN operator as

F = λ(v, h)〈vα ~ h〉α(V, h) where σ = α.

The probe operator is written in the Diderot syntax as

tensor [d] p;

tensor [σ] t= F (p);

and with the generic EIN operator as

t = λ(F, x)〈Fα(x)〉α(F, p) where σ = α.

Diderot lifts tensor operations on fields such as the negation, scale, addition, subtraction and
division of fields. Operations on scalar fields, and of fields of arbitrary range are represented in
EIN expressions in Figure 3.7. The scaling of a field can be expressed in the Diderot syntax as

tensor [] t;

field#k(d)[σ] F;

field#k(d)[σ] G=F*t;

The scaling operator is written with the generic EIN operator as

G = λ(s, F )〈sFα〉α(t, F )

where σ = α.

Ideally, any operator between tensors can be represented between fields. EIN expressions can
represent addition, subtraction, product, and division between fields (Figure 3.8). Field operations
have the same restrictions as their tensor operations counterparts. For instance, the two fields must
have the same type in order to add or subtract them.
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Description Surface Language EIN expression

Negative Field -F λF 〈−Fα〉α
Scale s*F λ(s, F )〈sFα〉α
Division F

s λ(s, F )
〈
Fα
s

〉
α

Probe F(x) λ(F, x)〈Fα(x)〉α
Convolution v ~ h λ(e)〈vα ~ h〉α
addtenField s+f λ(s, f)〈s+ ϕ〉
subTenField s-f λ(s, f)〈s− ϕ〉
subFieldTen f-s λ(s, f)〈ϕ− s〉

Figure 3.7: Operators on Fields

Surface Language EIN expression Description

F+G λ(F,G)〈Fα +Gα〉α Addition
F-G λ(F,G)〈Fα −Gα〉α Subtraction
(fg) λ(fg)〈fg〉 Product of Scalar Fields
f/g λ(fg)〈f/g〉 Division of Scalar Fields.
(fG) λ(fG)〈fGα〉α Product of Fields.
F ·G λ(FG)〈ΣiFαiGiβ〉αβ Inner Product of Fields

F ×G λ(FG)〈EijkFjGk〉i Cross Product of Vector field

Figure 3.8: Tensor operators between fields

3.3.3 Field differentiation Operators

There are four different basic differentiation operators in EIN expressions: Curl ∇ × F , Gradient
∇ϕ, dot-times ∇⊗F , and Divergence ∇·F . Table 3.9 summarizes the basic types of differentiation
EIN expressions support. Section 2.2 provided a mathematical basis for these different types field
differentiation. The Curl has 2 different types of representations that will be reviewed in this
section. The Gradient and dot-times are represented the same as in index notation from Section
2.4. The Divergence operator uses an explicit Σ to bind the variable index.

Description Surface Language EIN expression

Gradient ∇F λF
〈

∂
∂xi
ϕ
〉
i

Divergence ∇ · F λF
〈

Σi
∂
∂xi
Fαi

〉
α

dot-times ∇⊗ F λF
〈

∂
∂xj

Fα

〉
αj

2d-Curl
Fy
dx −

Fx
dy λF

〈
∂
∂x0

¯

F1
¯
− ∂

∂x1
¯

F0
¯

〉
3d-Curl ∇× F λF

〈
ΣjkEijk ∂

∂xj
Fk

〉
i

Figure 3.9: Differentiation of Fields

Curl EIN Expressions provide a large advantage over direct-style notation when expressing the
Curl operator. The 3-d Curl operator is unlike the other basic types of differentiation because it
uses the Eijk notation. The use of Eijk allows us to do Eijk base simplifications that are introduced
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in Section 4.3.2. The 3-d Curl is written in the Diderot syntax as

f i e l d#k ( 3 ) [ 3 ] F ;
t en so r [ 3 ] t = ∇× F (p) ;

and in EIN notation as

t = λF

〈
ΣjkEijk

∂

∂xj
Fk

〉
i

(F ).

To compute the 2-d Curl we use the constant index to specify an axis and the result is a scalar.The
2-d Curl in Diderot syntax is

f i e l d#k ( 2 ) [ 2 ] F ;
t en so r [ 2 ] t = ∇× F (p) ;

and in EIN notation

t = λF

〈
∂

∂x0
¯

F1
¯
− ∂

∂x1
¯

F0
¯

〉
(F ).

dot-times The dot-times operator introduces a variable index to an expression. A single dot-
times operator applied to a vector field evaluates the Jacobian. Two dot-time operators can be
applied to a scalar field to represent the Hessian. Generally, multiple dot-times operators can be
used to increase the level of differentiation to a field in respect to a variable index.

Divergence The Divergence operator uses an explicit Σ to represent the bound index on the
field. The Divergence is written in the Diderot syntax as

f i e l d#k (d ) [ v ] F ;
f i e l d#k (d ) [ ] G = ∇ · F

and in EIN notation

G = λF

〈
Σi

∂

∂xi
Fαi

〉
α

(F )

EIN expressions can also represent more complicated types of differentiation. For instance, the
Laplacian, Hessian, and Jacobian are combinations of the basic differentiation operators. Section
4.3 introduces the process of combining EIN operators to one another.

3.4 Discussion

EIN Expressions were designed to represent tensors and field computations in the Diderot compiler.
This motivated the addition of operators that are not found in index notation, such as convolu-
tion, image indexing, and kernel differentiation. Therefore EIN expression supports a wider set of
operations. This section will compare EIN operators to index notation as described by section 2.2.
Other people have done work designing index notation, and that work is discussed further in the
related works chapter.

3.4.1 Summation expression

In standard index notation an explicit summation symbol is rarely used. By using an explicit
summation symbol, EIN expressions are able to support diverse operations, indicate range of a
bound index, and vectorize code generation in a simpler way.
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Implicit vs. explicit index

The index notation described in chapter 2.2 suggested that an implicit summation occurs when
an index is repeated exactly twice. This strategy could not differentiate between the dot product
and modulate, two different operations with a repeated index. The dot product is written in EIN
expressions as

s = 〈
∑

iAiBi〉

and modulate as
Ci = 〈AiBi〉i .

Indicating range

In standard index notation, the default range for a variable index starts at 0. The summation
expression indicates the range of the variable index. The index can vary over a shape of tensor and
the support of a kernel. The latter is particularly valuable to evaluating fields since it does not
start at 0. For instance, kernel evaluation could be expressed as

s =
∣∣∣ 〈∑s

j=1−s h(j̃)
〉 ∣∣∣

Code generation

An explicit summation index can help split large EIN operators into vectorizable simple expressions.
Without the summation expression, the compiler would need to scan every sub-expression in the
EIN operator to find the summation indices and to indicate vectorization potential. Operations
like the dot product provide opportunity for vectorization but could be embedded in complicated
EIN expressions.

3.4.2 Subscripts

In index notation, only one free index is allowed in an expression. Since we support operations like
modulate, we allow any number of variable index variables in an expression. The use of a constant
index is not always discussed for index notation. The constant index allows us to express a specific
axis or direction. Particularly, it allows us to compute the 2-d Curl and the differentiation in a
kernel, which cannot be represented with variable indices.

3.4.3 Additional Notes

Consider the following expressions

1. ai = bj

2. ai

3. aibj = bjai

The indices in EIN expressions are bound by outside the EIN operator or by the summation
expression. (1) does not make sense because it is unclear where i and j are bound. An upper index
has been used to differentiate between covariant and contra-variant tensors in other works. Our
notation does not support upper index (2). Instead all tensors operations are represented with
individual tensors and their multi-index. The product of tensors can be represented in any order
(3).
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Chapter 4

Implementation

In the lowering and optimization phase of the compiler, operations between tensors and fields are
expressed with an EIN operator. Initially, these operations are expressed with a basic set of generic
EIN expressions that are specialized. Then, as the optimization and transitions are made, EIN oper-
ators are changed to lower-level operations. Section 4.1 gives an overview of the SSA Infrastructure.
Section 4.2 introduces how EIN operators are represented in the compiler in high-IL and mid-IL.
Section 4.3 describes their simplifications and transitions. Writing mathematical operators in this
concise way allows for index-base optimizations and rewriting in the high-IL optimization phase.
During the transition between high-IL and mid-IL, field expressions are expanded as described in
Section 4.4. Then, complicated EIN operators are split into simple EIN operators. Section 4.5 de-
scribed the simple-EIN process. The code generation chapter discusses the transition from mid-IL
to low-IL. During that transition, EIN operators are transformed into scalar and vector operations.

4.1 SSA Infrastructure

The optimization and lowering phase of the compiler occurs in three intermediate representations
that are instances of Single State Assignment form [9]. Figure 4.1 presents the infrastructure of
SSA. High-IL, mid-IL, and low-IL have the same control flow graph but vary on their types and
operators. Section 4.2 will focus on the representation of EIN operators in high-IL and mid-IL.

ς ::= variable
x ::= State Read strand states

| Var(ς)
| Lit Literal
| OP(ς̄) Operator
| Apply(ς̄) basis function application
| Cons(τ, ς̄) cons ς variables of type τ
| 〈e〉α(ς̄) EIN operator

Figure 4.1: SSA
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4.2 EIN Operators

The compiler supports all the operations on tensors mentioned in the design chapter, including
addition, subtraction, negation, division, and multiplication of tensors as shown in Figures 3.2, 3.3
and 3.4. Diderot’s implementation does not support all the field operations in the design chapter,
and in particular, does not yet support division and products between fields. My implementation
supports the negation, scaling, addition, subtraction and division by a scalar, probe, convolution,
differentiation of fields, as well as basic addition and subtraction between fields as shown in Figures
3.7, 3.8, and 3.9.

EIN Expressions are originally mapped to a basic set of high-IL EIN operators. Then, the op-
erators are translated to lower level operators. The derivations of fields are carried out in a series
of steps. A field is represented abstractly with Fα until it is substituted with the v ~ h expression
that represents the surface language definition of the field. Then, the probe of v~h gets expanded
to index-images Vα[ē] and kernels hψ̄[e] . Finally, the Vα[ē] and hψ̄[e] expressions are compiled away
into tensor operations in low-IL. Presented here is the grammar for EIN operators in high-IL and
mid-IL.

high-IL

During the high-IL optimization phase, the Fα is replaced with vα~hβ. Substitutions are discussed
in Section 4.3.1. The ∂

∂α expression in the � constructor will then be pushed to the kernel in the

convolution expression, ∂
∂β � (vα ~ h) =⇒ vα ~ hβ. (Term rewrites are discussed in Section 4.3.2)

The Fα,� and ∂
∂α operators will disappear after the high-IL optimization phase. Figure 4.2 shows

the EIN expression grammar in high-IL.

e ::= s real
| Tα Tensor
| Eiii Epsilon
| δµ,µ knocker-deltas
| Σν̄e Summation
| −e Negation
| e+ e Addition
| e− e Subtraction
| e ∗ e Multiplication
| e

e Division
| Fα Field

| ∂
∂α Derivative

| e � e Apply
| vα ~ hα Convolution
| e(e) Probe

Figure 4.2: high-IL EIN Expression Grammar
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mid-IL

The probe (vν ~ hµ)(x) gets expanded to image and kernel expressions : Vα[ē], hψ̄[e]. Section
4.4 describes the process of expanding fields. During the transition from high-to-mid-IL, EIN
operations are also split into simple expressions as described in Section 4.5. Figure 4.3 shows the
EIN expression representation in mid-IL.

ψ ::= (c
¯
, i) Delta

b ::= s real
| Tα Tensor
| Eiii Epsilon
| δµ,µ kronecker-deltas

| ĩ Value-of-index
| Vα[ē] Index-Images

| hψ̄[e] kernel

e ::= −b Negation
| b− b Subtraction

| b
b Division

| b+ b Addition
| bb Multiplication
| Σν̄b Summation

Figure 4.3: mid-IL EIN expressions Grammar

4.3 Simplifications and Transitions

The goal of the normalization stage is to make the compiler smarter about tensor calculus. With
concise expressions, the simplification and transformation process is more efficient. The normaliza-
tion stage in high-IL occurs in two phases, substitution and rewrites.

4.3.1 Substitutions

This section introduces a systematic way of substituting EIN operators into one another. These
techniques allows the support of a larger set of operators that are mathematically sound. In the
following examples ’outer indices’ are the variable indices that are bound to the outer shape of the
EIN operator.

Substitution Technique

An operation normally represented by multiple direct-style operators in the compiler can be com-
bined and represented by one EIN operator. The outer product and addition operation is written
in the Diderot syntax as

tensor a [σ]; tensor b [σ]; tensor s [ς]
tensor c [σ]= a+b;

tensor t [ςσ]= s ⊗ c;
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and expressed in high-IL as two EIN operators

t1 = λ(A,B)〈Aη +Bη〉η(a, b)

t2 = λ(S, T )〈SαTβ〉αβ(s, t1)

where η = σ, α = ς, and β = σ

The high-IL optimization phase will combine these operators into one EIN operator. In any sub-
stitution where EIN operator t1 is an argument to tensor Tβ in t2, Tβ and t1 must have the same
shape. The outer indices for t1 will map to the indices in Tβ. In this case, t1 has outer indices η
and so η =⇒ β. The result is a single EIN operator to represent these two operations.

t′2 = λ(S,A,B) 〈Sα(Aβ +Bβ)〉αβ (s, a, b)

where η =⇒ β

Field substitutions are treated the same way as tensor substitutions. A common substitution is a
field by its image and kernel definition. The probing of a field is written in the Diderot syntax as

field#k(d)[σ] F = V ~ h;
tensor [σ] t= F (p);

The convolution is expressed with EIN operator t1 and probe with EIN operator t2. The surface
language gets mapped to EIN notation as

t1 = λ(v, h)〈vβ ~ h〉β(V, h)

t2 = λ(F, x)〈Fα@x〉α(t1, p)
where σ = β = α.

Then represented with one EIN operator as

t′2 = λ(v, h, x)〈(vα ~ h)@x〉α(V, h, p)
where β =⇒ α

Surface Language

Combinations of EIN operators are used to represent more complicated expressions in the surface
language. For example, the ∇× of the Gradient is the Hessian of a scalar field. The operators are
written in the Diderot syntax as

field#k(d)[]ϕ;
field#k(d)[d,d] F= ∇⊗∇ϕ

This operation is represented by two different basic EIN operators. The Gradient is represented
with EIN operator t1 and the dot-times operator as EIN operator t2.

t1 = λ(ϕ)
〈

∂
∂xk

ϕ
〉
k

(f)

t2 = λ(F )
〈

∂
∂xj
· Fi
〉
ij

(t1)

During the substitution phase, the operations will be combined to one operator. Outer index k in
t1 is mapped to index i in F1. The new expression will be the Hessian of the scalar field.

t′2 = λ(ϕ)
〈

∂
∂xjxi

ϕ
〉
ij

(f)

where k =⇒ i
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Index-base substitutions

The simple act of substitution can also allow us to take advantage of index-base optimizations. The
trace of the outer product is written in the Diderot syntax as

1 t enso r [ d ] a ; t en so r [ d ] b ;
2 r e a l s = trace(a⊗ b)

In high-IL, EIN expressions present the outer product and trace as

t1 = λ(A,B) 〈AiBj〉ij (a, b)

t2 = λ(T ) 〈ΣiTii〉 (t1)

When these operations are applied, the result will be the dot product. The outer indices for t1 ij
are mapped to indices for Tii.

t′2 = λ(A,B) 〈ΣiAiBi〉 (a, b)
where i =⇒ i j =⇒ i

Figure 4.4 shows examples from index-based substitution.

Surface Language Description EIN Op

∇ · ∇ϕ =⇒ ∇2ϕ Grad(Divergence) =⇒ Laplacian λf
〈

Σi
∂
∂xi

∂
∂xi
ϕ
〉

∇⊗ (∇ϕ) =⇒ ∇⊗∇ϕ dot-times (Gradient) =⇒ Hessian λϕ
〈

∂
∂xi

∂
∂xj

ϕ
〉
ij

Trace(∇⊗∇ϕ) =⇒ ∇2ϕ Trace(Hessian)=⇒ Laplacian λF
〈

Σi
∂

∂xixi
ϕ
〉

Trace (a⊗ b) =⇒ a · b Trace(outer) =⇒ dot product λ(A,B)〈ΣiAiBi〉

Figure 4.4: Substitution

4.3.2 Rewrite Rules

Diderot’s direct-style compiler supports various rewrites for probing and differentiation of fields.
EIN notation introduces additional index-based rewrites supported by tensor calculus. As expres-
sions become more complicated, it can be difficult to find instances of these rules that are embedded.
The bulk of the rules are discussed and represented in EIN expressions in the Appendix. This sec-
tion offers a few domain-specific and index-based rewrites.

Probe

The probe expression is distributed over the addition and subtraction operator (A9).

(F +G)(x) =⇒ F (x) +G(x)

Other helpful rewrites allow us to make computations on the tensor result of a probe rather than
the entire field.

(−F )(x) =⇒ −(F (x))

(sF )(x) =⇒ s(F (x))
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Differentiation

Constants are moved to the outside of the differentiation expression (C1).

∇(sϕ) =⇒ s∇ϕ

The differentiation operator is distributed to each addition and subtraction subexpression with just
one rule (A10).

∇(ϕ1 + ϕ2) =⇒ ∇ϕ1 +∇ϕ2

∇ · (ϕ1 + ϕ2) =⇒ (∇ · ϕ1) + (∇ · ϕ2)

∇× (F +G) =⇒ (∇× F ) + (∇×G)

The differentiation index is pushed down to the kernels in a convolution expression (C6).

∇(v ~ h) =⇒ v ~∇h

The direct-style version of the compiler supports this rewrite as

∇(v ~ hi) =⇒ v ~ hi+1

This rule limits the type of differentiation that can be supported, so instead EIN notation has the
following rewrite

∇j(v ~ hi) =⇒ v ~ hij

Index-based rewrites

Index notation supports rewrites that were not available in the direct-style notation of the compiler.
There are several index-based identities that were mentioned in Section 2.2. Two epsilons in an
expression with a shared index can be rewritten to deltas (B1-B3) [8].

EijkEilm =⇒ δjlδkm − δjmδkl

A δij expression can be applied to tensors, fields, convolution, and partial expressions, replacing an
instance of j with i (B4- B7).

δijTj =⇒ Ti

δijFj =⇒ Fi

∇j � (δije) =⇒ ∇i � (e)

Additionally, when the differentiation indices have two of the same epsilon indices, then the result
is 0 (B8,B9).

∇ij � (Eijke)) =⇒ 0.0
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Surface Language Transition

∇×∇ϕ =⇒ 0
∇ · (∇× F ) =⇒ 0
∇× (∇× V ) =⇒ ∇(∇ · V )−∇2V
trace(V (x)⊗G(x)) =⇒ V (x) ·G(x)

Figure 4.5: Fields Identities, ϕ is a scalar field, V and G are vector fields, and F is a generic field

4.3.3 Identities

Tensor-calculus based rewrites and the algebraic identities found from the systematic technique of
substitution are advantages of this type representation in the compiler. Figure 4.5 and Figure 4.6,
show examples of the tensor and field identities. The Appendix shows their transformations in EIN
notation.

This section illustrates the transformation of a tensor and field identify. The tensor identity
(a × b) × c =⇒ b(a · c) − a(b · c) is found by index-based optimizations. The cross product op-
erations are written in the Diderot syntax as

tensor [3] a;tensor [3] b;tensor [3] c;

tensor [3] d = (a× b)
tensor [3] e = (d× c)

The cross product operations are expressed in high-IL with two EIN operators as

d = λ(A,B)〈ΣjkEijkAjBk〉i(a, b)

e = λ(A,B)〈ΣjkEijkAjBk〉i(d, c)
The EIN operators are combined to a single EIN operator as

e′ = λ(u, v, t)〈ΣjkEijk(ΣlmEjlmulvm)tk〉i(a, b, c).

Then, through a series of rewrites, the expression goes through the following transformations.

=⇒ λ(u, v, t)〈ΣjklmEijkEjlmulvmtk〉i
=⇒ λ(u, v, t)〈Σklmδklδimulvmtk − Σklmδilδkmulvmtk〉i
=⇒ λ(u, v, t)〈Σk(ukvitk)− Σk(uivktk)〉i
=⇒ λ(u, v, t)〈viΣk(uktk)− uiΣk(vktk)〉i

This resulting EIN expression matches the right hand side of the algebraic identity b(a · c)−a(b · c).

Presented next is the field identity ∇ × ∇ϕ =⇒ 0. The Curl and Gradient are represented with
two EIN operators as

c = λF

〈
ΣjkEijk

∂

∂xj
Fk

〉
i

g = λϕ

〈
∂

∂xi
ϕ

〉
i

(c).

Then, the EIN operators are combined to a single EIN operator in high-IL as

g = λϕ

〈
ΣjkEijk

∂

∂xj
(
∂

∂xk
ϕ)

〉
i
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Surface Language Transition

trace(T + S) =⇒ trace(T ) + trace(S)
(ST )T =⇒ S
(a× b)× c =⇒ b(a · c)− a(b · c)
a× (b× c) =⇒ b(a · c)− c(a · b)
(a× b)× (c× d) =⇒ (a · (c× d))b− (b · (c× d))a
(a× b) · (c× d) =⇒ (a · c)(b · d)− (a · d)(b · c)

Figure 4.6: Tensors

The computation is rewritten as

=⇒ λϕ

〈
ΣjkEijk

∂

∂xjk
ϕ

〉
i

=⇒ λϕ〈0)〉i

4.4 Expanding a probe of a field

During the transition from high-IL to mid-IL, the probed fields are expanded. The new expres-
sion directly expresses the computations being done on separable image and kernels expressions.
Section 2.4 introduces the mathematics behind the reconstruction of fields. Index notation could
represent operations on fields in Section 2.2 but does not provide the notation needed to show the
reconstruction of fields. EIN expressions Vα(ē) ,̃i,and hψ̄(e) were introduced for this purpose in
Section 3.2. This section will represent the reconstruction of fields using EIN notation.

4.4.1 Transformation between basis

The following section will refer to image-space tensors n and f, and transformation matrix P. Those
tensors are created using a mix of direct-style and EIN operators. Mid-IL operators “inverse” and
“floor” are expressed in the compiler using direct-style notation. Those operators will be expressed
as

e−1 and bec respectfully.

In the surface language, a field can be probed at a position p. Position p is in world-space and is
transformed to image-space position x using transformation matrix M and translation matrix T.
We define the commonly used inverse of matrix M as R.

R = M−1

x = λ(A,B,C)〈AijBj + Ci〉i(R,p,T)

The tensors n and f are created using x as

n = bxc

f = x− n

We can represent transformation P where P=[M−T ]WI as the transpose of R with EIN operator

P = λ(R)〈Rji〉ij(R)
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4.4.2 Reconstruction of Pure Field in EIN Notation

Generally, the expansion of the probe of a d-dimensional field is in Figure 4.7. The probing of a
2-by-2 field is represented in the Diderot syntax as

field#k(2)[2 ,2] F = V ~ h;
tensor [2,2] t= F (p);

The surface language gets mapped to two EIN operators in high-IL and then combined into a single
EIN operator as

t = λ(v, h, x)〈vα ~ h(x)〉α(V, h, p)

where α = [k, l] and k, l both range from 0 to 1

The probe of a field is expanded to image and kernel subexpressions. An image V ([e]) is evaluated
at an integer neighborhood of positions. A d-dimensional field will create d kernel expressions h(e).
Mathematically, this operation on a 2-by-2 field is expressed as[ ∑s

ij:1−s V00([n + i,n + j]) h(f− i)h(f− j) V01([n + i,n + j]) h(f− i)h(f− j)∑s
ij:1−s V10([n + i,n + j]) h(f− i)h(f− j) V11([n + i,n + j]) h(f− i)hf− j)

]
The operation is written in EIN notation as〈∑s

ij:1−s((vα[n0
¯

+ ĩ,n1
¯

+ j̃]) ∗ (h[f0
¯
− ĩ]) ∗ (h[f1

¯
− j̃]))

〉
α

where α = [k, l] and k, l both range from 0 to 1

The specific axis for the fractional f and integer n position are represented with constant index, 0
¯

and 1
¯
. Variable indices are lifted to integer values as ĩ and j̃.

1-d
〈

Σi((Vα[n0
¯

+ ĩ]) ∗ (h[f0
¯
− ĩ]))

〉
α

2-d
〈

Σij((Vα[n0
¯

+ ĩ,n1
¯

+ j̃]) ∗ (h[f0
¯
− ĩ]) ∗ (h[f1

¯
− j̃]))

〉
α

3-d
〈

Σijk((Vα[n0
¯

+ ĩ,n1
¯

+ j̃,n2
¯

+ k̃]) ∗ (h[f0
¯
− ĩ]) ∗ (h[f1

¯
− j̃]) ∗ (h[f2

¯
− k̃]))

〉
α

Figure 4.7: Probe of Field

4.4.3 Reconstruction of the Differentiation of Fields in EIN Notation

Generally, the derivative of a field can be expressed as ∂
∂xβ
� Fα in high-IL and vα ~ hβ in mid-IL.

A derived field is reconstructed similar to a pure field. The difference in the reconstruction is in
the kernel subexpressions hψ̄[x]. The index for the differentiation is captured in ψ. Each index in
the multi-index β creates a pair, and ψ is a list of these pairs. Highlighted here are examples of
the Gradient and Hessian.

First Derivative

Generally, the first derivative of a field can be expressed as vα~ hi in mid-IL, and the result of the
probe operation is a tensor of shape α,i. The Gradient of a 2-d scalar field is written in the Diderot
syntax as

43



field#k(2)[] ϕ = V ~ h;
field#k(2)[2] F = ∇ϕ;
tensor [2] t= F (p);

In high-IL, this would be expressed as

t = λ(v, h, p)
〈
v ~ hi(p)

〉
i
(V, h, p).

and in mid-IL as 〈
Σjk((V [n0

¯
+ j̃,n1

¯
+ k̃]) ∗ (hδ0i [f0

¯
− j̃]) ∗ (hδ1i [f1

¯
− k̃]))

〉
i

Two kernels hψ̄ are created for this 2-d field where ψ̄=[(c
¯
, i)] and c

¯
is a constant to represent an

axis of the image. In the code generation phase each pair (c, i) is evaluated as δc,i. The result is in
index space, so we use transformation matrix P to transform the tensor to world-space.

λ(A,B)〈ΣjAijBj〉i(P, t)

Similarly, two kernels are created when we take the Jacobian for a 2-d vector fields. The Jacobian
is written in Diderot syntax as

field#k(2)[2] F = V ~ h;
tensor [2,2] t= ∇⊗ F (p);

In high-IL this would be expressed as

λ(v, h, p)
〈
vi ~ hj(p)

〉
ij

and in mid-IL as 〈
Σjk((vi[n0

¯
+ k̃,n1

¯
+ l̃]) ∗ (hδ0j [f0

¯
− k̃]) ∗ (hδ1j [f1

¯
− l̃]))

〉
ij

General examples of expanding the first derivative of a d-dimension field are in Figure 4.8.

1-d
〈

Σi((Vα[n0
¯

+ ĩ]) ∗ (hδ0,µ [f0
¯
− ĩ]))

〉
αµ

2-d
〈

Σij((Vα[n0
¯

+ ĩ,n1
¯

+ j̃]) ∗ (hδ0,µ [f0
¯
− ĩ]) ∗ (hδ1,µ [f1

¯
− j̃]))

〉
αµ

3-d
〈

Σijk((Vα[n0
¯

+ ĩ,n1
¯

+ j̃,n2
¯

+ k̃]) ∗ (hδ0,µ [f0
¯
− ĩ]) ∗ (hδ1,µ [f1

¯
− j̃]) ∗ (hδ2,µ [f2

¯
− k̃]))

〉
αµ

Figure 4.8: Differentiation of a Field

Second Derivatives

The second derivative of a field can be expressed as ∂
∂xij
� Fα in high-IL and vα ~ hij in mid-IL.

The Hessian of a 2-d scalar field in Diderot syntax as

field#k(2)[] ϕ = V ~ h;
field#k(2)[2 ,2] F = ∇⊗∇ϕ;
tensor [2,2] t= F (p);
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In high-IL this would be expressed as

t = λ(v, h, p)
〈
v ~ hij(p)

〉
ij

(V, h, p).

Two kernels hψ are created for this 2-d field, ψ=[(c
¯
, i),(c

¯
, j)]. During the code generation phase

each pair in ψ is evaluated as a δ and added together. The probe of a field is expressed in mid-IL
as

t =
〈

Σkl((v[n0
¯

+ k̃,n1
¯

+ l̃]) ∗ (hδ0i+δ0j [f0
¯
− k̃]) ∗ (hδ1i+δ1j [f1

¯
− l̃]))

〉
ij

The result is in index space, so we use transformation matrix P to transform the tensor to world-
space.

λ(A,B)〈ΣklAikBklAjl〉ij(P, t)

Examples of expanding the second derivative of a d-dimensional field is in Figure 4.9.

1-d
〈

Σi((Vα[n0
¯

+ ĩ]) ∗ (hδ0,µ+δ0,ν [f0
¯
− ĩ]))

〉
αµν

2-d
〈

Σij((Vα[n0
¯

+ ĩ,n1
¯

+ j̃]) ∗ (hδ0,µ+δ0,ν [f0
¯
− ĩ]) ∗ (hδ1,µ+δ1,ν [f1

¯
− j̃]))

〉
αµν

3-d
〈

Σijk((Vα[n0
¯

+ ĩ,n1
¯

+ j̃,n2
¯

+ k̃]) ∗ (hδ0,µ+δ0,ν [f0
¯
− ĩ]) ∗ (hδ1,µ+δ1,ν [f1

¯
− j̃]) ∗ (hδ2,µ+δ2,ν [f2

¯
− k̃]))

〉
αµν

Figure 4.9: Second differentiation of a Field

4.5 Simple-Ein

During the transition from high-IL to mid-IL, complicated EIN expressions are split into simpler
ones in order to better identify methods for code generation and common subexpressions. Com-
bining EIN operators in the optimization phase can lead to large and complicated EIN operators.
A general code generator would need to expand every operation to work on scalars, which can be
unwieldy and could miss the opportunity for vectorization. Instead, every EIN operator is split
into a set of simple EIN operators. Each EIN expression then only has one operation working
on constants, tensors, deltas, epsilons, images and kernels. Figure 4.3 shows the EIN expression
representation in mid-IL. Here is an example of splitting an EIN operator

t = λ(A,B,C)

〈
Ai + (

∑
j

BijCj)

〉
i

(a, b, c)

In this case, the EIN operator t is split into two EIN operators t1 and t2, each with a single
operation. These mid-IL EIN operators are trivially rewritten as low-IL vector product and vector
addition operators as

t1 = λ(A,B)

〈∑
j

AijBj

〉
i

(b, c)

t2 = λ(A,B)〈Ai +Bi〉i(A, t1)

Deciding how to multiply tensors can be much more complicated. The TCE project uses various
techniques on multiplying tensors which include reshaping tensors and library calls in [13]. In the
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future, we hope to explore other techniques. For now, we split when there is an embedded operator
or a summation. For instance,

t = λ(A,B,C)

〈
Ai ∗ (

∑
k

BjkCk)

〉
ij

(a, b, c)

is split into two EIN operators as

t1 = λ(A,B)

〈∑
j

AijBj

〉
i

(b, c)

t2 = λ(A,B)〈AiBj〉ij(a, g1).

Splitting EIN expressions into simple expressions does not reverse the optimizations done earlier.
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Chapter 5

Code Generation

Code generation is the last phase in the Diderot compiler. The direct-style compiler aims to gener-
ate code for a target platform, but there are some limitations. EIN notation is designed to extend
the number of supported operations, but finding vectorization potential on a large complicated
expressions can pose some challenges. The implementation chapter of this paper discussed tech-
niques used to transform one EIN operator to a set of simple ones that can be better vectorized.
EIN operators are transformed to low-IL operators, which are designed to take advantage of the
target hardware. Section 5.1 will discuss the current state of the Diderot compiler. Section 5.2
will introduce the notation used by low-IL operators. Section 5.3 and Section 5.4 will demonstrate
transforming tensor and field operations, respectfully.

5.1 Diderot Compiler

The Diderot compiler aims to take advantage of target hardware, but it has several limitations.
The surface language expresses operations on tensors, but only tensor operations of a subset of
lengths are supported in the code generation phase of the compiler. The code generator is not
general enough. Any target hardware can have limited vector ability and the vector code would get
implemented as scalar computations. Currently, we do not take advantage of the GPU’s fine grain
vector operations for small scale tensor operations. For these operators, the scheduling overhead
to put the computation on separable threads could be more costly than the advantages.

The notation presented in this chapter was designed to take advantage of the target hardware
before knowing what the hardware supports. Mid-IL EIN operators represent operations on ten-
sors of arbitrary length. The notation in low-IL assumes that infinitely wide vector operators and
vector reduction can be supported. We then intend to map the vector operators presented in this
section to finite size operations as supported by the target hardware. If the platform does not
support vector operations, then we use scalar operations. This intermediate step allows us to break
down EIN operators into basic scalar and vector operations while keeping the ideal generated code
in mind.

The design of EIN operators can pose some challenges for code generation. EIN operators created
after the high-IL stage can be complicated and large. Currently, each EIN operator is simplified
as it transitions to a mid-IL operator in order to better identify vectorization potential. There are
various techniques that we can explore such as tensor reshaping and design choices. On the other
hand, if each vector operation created in low-IL gets implemented as a scalar operation on the
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target-hardware, then some of these intermediate steps may not be worthwhile.

5.2 Notation

The figure below shows a representation of the low-IL operators. Low-IL vector operators include
vector addition, vector subtraction, vector product, scalar/vector product, and summation. Low-IL
scalar operators include scalar addition, subtraction, and product. Image probing is expressed with
two low-IL operators Ld, and ς. All low-IL operators work on variable ids.

V ::= Image Field
µ ::= Constant index
ς ::= Addr(V, x) image address of V[x]

Basic ::= vµ Projection
| sµ Scalar
| c const

l ::= Basic
| vµ + vµ vector addition
| vµ − vµ vector subtraction
| vµ ∗ vµ vector product
| Σvµ Summation or vector reduction
| sµ + sµ scalar addition
| sµ − sµ scalar subtraction
| sµsµ scalar product
| sµ ∗ vµ scalar vector product
| l :: l cons to create a higher order tensor
| ς
| Ld(V, ς, d) Load V starting at ς to create shape tensor[d]

The compiler transforms EIN operators into a basic set of low-IL operators. The first step is to
identify potential for vectorization. If vectorization can be used then a specific set of vector oper-
ators are used to generate code for the operation, otherwise, only scalar operations are used. The
second step is to iterate over the shape of the tensor result, and bound variable indices. The third
step is to evaluate each expression in the body of the EIN operator. Tensors can be evaluated as a
basic expression sµ or vµ depending on whether vectorization is being used. Section 6.3 discusses
Kernels and Images, which are more complicated. The expressions Eiii and δµ,µ are evaluated to

an integer. ĩ is lifted to the bound value of variable index i. If there is a
∑

then we unroll loops
and bound variable indices. EIN expressions +,−, ∗, / are mapped to their low-IL counterparts
+,−, ∗, /.

This transition uses basic algebraic rewriting. Evaluating ĩ , Eiii and δµ,µ to integers can provide
a new opportunity to simplify subexpressions. Field probing typically requires high-arithmetic in-
tensity, so it is optimal to have a design that can detect common subexpressions. We lift the image
address out of the load operator and image-space position from the kernel evaluation.

5.3 Tensors

The dot product and outer product on tensor A, B and C can be written in Diderot syntax as
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1 tensor [3,2] A; vec2 B; tensor [2,3] C;

2 tensor [3] D = A · B;

3 tensor [3] E = B ·AT ;
4 tensor [3,3] F = A · C;

5 tensor [3,2,2] G = A ⊗ B;

The inner product operation on line 2 is written in mid-IL as

〈ΣjAijBj〉i where iε3 and jε2

low-IL transforms the EIN operator into vector product, vector reduction, and cons operations as

a = u0 ∗ v b = u1 ∗ v c = u2 ∗ v
a′ = Σa b′ = Σb c′ = Σc

D = a′ :: b′ :: c′

where u = A and v = B

This operation can also be written in Diderot syntax on line 3 and written in mid-IL as

〈ΣjBjAji〉i where iε3 and jε2

This computation should produce the same set of low-IL operators, but currently it does not. This
example highlights a missed opportunity in the current implementation of EIN operators. The
expression here needs to be organized in order to detect the potential for vectorization. As is, this
expression will use low-IL scalar operators and transform the EIN operator as

a0 = s00r0 a1 = s10r1 x0 = a0 + a1

b0 = s01r0 b1 = s11r1 x1 = b0 + b1
c0 = s02r0 c1 = s12r1 x2 = c0 + c1

D = x0 :: x1 :: x2

where s = A and r = B

The inner product operation between matrices can be written in Diderot syntax on line 4 and
written in mid-IL as

〈ΣkBikAkj〉ij where i, jε3 and kε2

Similarly, this computation is an example of a missed opportunity in the current implementation
of EIN operators. As is, this expression will use low-IL scalar operators not presented here. The
outer product of tensor A and B is written Diderot syntax in Line 5 and in mid-IL as

〈AijBk〉ijk

In low-IL this expression uses the scalar vector product operator as

a0 = s00 ∗ v a1 = s01 ∗ v x0 = a0 :: a1

b0 = s10 ∗ v b1 = s11 ∗ v x1 = b0 :: b1
c0 = s20 ∗ v c1 = s21 ∗ v x2 = c0 :: c1

E = x0 :: x1 :: x2

where s = A and v = B

Cons operator used in x0, x1, x2 creates an i-by-j matrix, and the cons operator used in E creates
an i-by-j-by-k tensor.
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5.4 Fields

At this point, probed fields are expressed in terms of Images, kernels, image-space positions, and
a summation symbol. Low-IL will unroll the summation loops, probe image fields, and evaluate
kernels to produce a block of simple low-IL operators. The Gradient of a 2-d scalar field is written
in mid-IL as 〈

Σjk((V [n0
¯

+ j̃, n1
¯

+ k̃])(hδ0i [f0
¯
− j̃])(hδ1i [f1

¯
− k̃]))

〉
i

The kernel has just one variable index i and it ranges from 0 to 1. In low-IL we iterate over the
outer index, bind every instance of i, and create the structure of the tensor as

=⇒

[
Σjk((V [n0

¯
+ j̃, n1

¯
+ k̃])(hδ00 [f0

¯
− j̃])(hδ10 [f1

¯
− k̃]))

Σjk((V [n0
¯

+ j̃, n1
¯

+ k̃])(hδ01 [f0
¯
− j̃])(hδ11 [f1

¯
− k̃]))

]

Evaluating the upper subscript to each kernel produces an expression similar to the mathematical
counterpart.

=⇒

[
Σjk((V [n0

¯
+ j̃, n1

¯
+ k̃])(h1[f0

¯
− j̃])(h0[f1

¯
− k̃]))

Σjk((V [n0
¯

+ j̃, n1
¯

+ k̃])(h0[f0
¯
− j̃])(h1[f1

¯
− k̃]))

]
The image and kernel values are computed independently. For the following example let

lb = 1− s, s′ = 2 ∗ s and y = n1
¯

+ lb

Images We can define the neighborhood of positions as

Pos =

 (n0
¯

+ lb, y) ... (n0
¯

+ lb, y + s)

.. .. ..
(n0

¯
+ s, y) .. (n0

¯
+ s, y + s)


The image is probed at these positions by loading a vector of positions over the fastest-axis. We
get the address of a single position x and then load a vector of length s’ from that position.

ς = Addr(V, x)

L = Ld(V, ς, s′)

Specifically, we get the address for each position in the first column of Pos by using scalar operations

x =


n0

¯
+ lb, y

n0
¯

+ lb+ 1, y

...., y
n0

¯
+ s, y


and use ld to load over the fast axis.

Li = Ld(V,Addr(V, xi), s
′)
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Kernels The kernels are evaluated independently over the range of its support. For simplicity,
we can represent this process as

P (hk, x) =⇒ t

where h is a kernel, k is the level of differentiation, x is a position vector with length s’, and t is a
vector with length s’. We can define polynomial a as the segments to the polynomial kernel h, and
so P evaluates

a0 + a1x+ a2x
2 + ...axx

n

This is implemented as
a0 + x(a1 + x(a2 + ...xan)

to reduce the number of expensive product operations. The 2-d field in this example has two kernel
computations that range over the support of the kernel.

hXPOS =

 f0
¯
− lb
..

f0
¯
− s



hY POS =

 f1
¯
− lb
..

f1
¯
− s


hx and hy then are the polynomial evaluation of the kernels, explicitly represented as

hx0 = P (h1, hXPOS) hy0 = P (h0, hY POS)
hx1 = P (h0, hXPOS) hy1 = P (h1, hY POS)

Finally, the Gradient of the 2-d field has the final vector product operations

Σ


ΣL0*hy0

ΣL1*hy0

..
ΣLs′*hy0

*hx0

Σ


ΣL0*hy1

ΣL1*hy1

..
ΣLs′*hy1

*hx1
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Chapter 6

Related Work

There are various domain-specific languages that can provide a link between the mathematical
algorithms and programming. These languages allow the end-user to write code that looks like
mathematics and lets the system focus on generating high-performance code. In particular, the
Spiral DSL and Tensor Contraction Engine projects feature relevant designs of tensor operators
and techniques used for producing high quality code. Lastly, we will discuss how index notation
has been expanded and implemented in a variety of ways.

Spiral Spiral, a DSL created for digital signal processing, is designed to support the mathematical
knowledge of various algorithms such as fast Fourier transform, circular convolution, and viterbi
decoding. Its implementation uses a signal processing language (SPL) featuring a small set of
constructs that includes symbols, matrix operators, krnocker product, butterfly matrix, and stride
permutation matrix. Spiral automatically generates code for algorithms in their target domain for
specific hardware. Operator Language (OL) was created to help generate high quality code in the
Spiral compiler [12]. They extend SPL to OL using a few kernels. OL is translated into a target
program, usually C code and library calls that help with their domain.

TCE TCE is tensor contraction engine created by Hatono, Albert et. al to represent quantum
chemistry [1]. Their work provides an algorithm to use common subexpression eliminate (CSE)
in their compiler. Tensor contraction representation can cause an explosion in the search space.
Diderot supports CSE on direct-style notation and on EIN operators in a literal way. The TCE
project approaches problems in effective code generation [17]. They have an algorithm that chooses
between libraries, including GEMM, BLAST [20]. They discuss their techniques to cost-effectively
multiply tensors and find the best sequence of two-tensor contractions [13]. The different order
of operations can result in very different cost-effective operation costs. The work demonstrates
that the best course for code generation can depend on the index ranges of tensors. They provide
examples of expressions being split apart and tensors being reshaped before making calls to libraries
[2]. The approach in this paper is not as extensive, as it splits EIN operators based on their outer
operation, but only handles a basic set of ways to cost-effectively do these computations.

Notation Support Ahlander et al. created support for programming directly with index nota-
tion [3]. The work develops grammar and semantics for index notation as a DSL and implemented
as a C++ library. Algorithms written in index notation can be converted to code made for scientific
computing. By using index notation in software, it closes a notational gap between mathematical
understanding and programming. This work supports index notation in the compiler and not the
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surface language and so Diderot keeps it programmability while still gaining the advantages that
index notation can provide.Some of these advantages include term rewriting and the ability to find
tensor identities. Franchetti does manipulation with well known mathematical identities in order
to produce vector code in [11]. This research does term rewriting based on mathematical identities
and does vectorization as a separate step. Rocklin, M. built a system to generate linear algebra
code in [19]. His work did similar term rewriting to reflect algebraic identities.

Index Notation Einstein index notation, sometimes called the summation convention, can be
used to represent physical quantities, stress tensors, velocity vectors, and various algorithms in
scientific computing. Various implementations of index notation require the designers to study the
ambiguities and limitations, and to develop grammar and semantics. This paper introduces an
index-inspired design, but there are some notable differences.

Index notation can support a diverse set of operations that Diderot currently does not support.
There are notable efforts to represent index notation on paper for various operations, functions,
transforms including Taylor series, angular velocity, physics concepts [3], rotation [4], and spherical
coordinates [5]. EIN notation expands the set of tensor and field operations that are applicable to
Diderot but provides the framework for much more.

A major part of the ambiguity in index notation is related to the implicit summation. An im-
plicit summation restricts the types of operations that can be supported. Therefore, various things
are done to suppress summation [3]. These include using notation to differentiate between types
of indices, using a no sum-operator [4], and describing summation to be between one upper and
one lower index [8, 21] or between indices that repeat exactly twice [23, 10]. EIN notation uses an
explicit summation symbol leading to more book-keeping but allowing us to express explicit bound-
aries for diverse operations. A specific axis of a tensor is only supported by some. Sokolnikoff, I.
uses parenthesis [23]. EIN uses an underbar c

¯
.

Upper and lower indices have been used on tensors to distinguish between covariant and contra-
variant and to define summation. Bolton, E. highlighted that the notation can be avoided for
orthogonal coordinates [5]. EIN notation chooses to not use upper and lower indices. Instead, the
compiler does the transformation between world-space and image-space internally.
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Chapter 7

Future Work

While the design of EIN notation has added many desired operators to Diderot, we have a plans to
further extend the operators. The internal representation and optimizations have been implemented
up to low-IL and so code generation is the next step.

7.1 Implementation More Tensor Calculus

We intend to extend the implementation to a larger set of field operators, such as the inner product
F · G and cross product F × G. We can compute tensor operators typically used on values and
lift them to be used on fields. We described the design of these additional field operations in the
Design chapter. Normalization techniques used on tensors can be lifted to fields. A summary of
the new algebraic identities can be found in the table below.

Surface Language Transition

∇(fg) f(∇g) + g(∇f)
∇ · (∇f ×∇g) 0
∇ · (f∇g − g∇f) f∇2g − g∇2f
∇(A ·B) (A · ∇)B + (B · ∇)A+A× (∇×B) +B × (∇×A)

The transitions are expressed in the figure above as they would be in the surface language. In
some cases the computation will be translated to a less expressive EIN expression that is tough to
express in the surface language. For instance, ∇(A ·B) is expressed as 〈ΣijAj∇iBj + ΣijBj∇iAj〉i
instead of the more complicated transition presented on the right hand side.

7.2 Optimization Techniques

The Diderot compiler uses various standard optimization techniques. Common subexpression elim-
ination (CSE) has been implemented to work on EIN operators quite literally. Consider expressions
c + b + a and a + c + b - they would not be detected as equal. Simple EIN operators provide a
simple solution in this case because we could just order the tensors a + b + c. Ordering every EIN
operator, however, may not be cost effective.
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7.3 Code generation

We intend to complete the implementation of the code generation phase. The current low-IL rep-
resentation of EIN expressions assumes infinitely-wide vector operators in order to take advantage
of the variety of plausible hardware targets. The next step is to map all low-IL vector operations
to either finite vector operations or scalar operations, depending on the target hardware.

The direct-style notation used in the Diderot compiler made it easy to vectorize operations that are
otherwise not obvious in EIN notation. For instance, the inner product between matrices generates
vector operators in the direct-style notation compiler but into scalar operations in the EIN nota-
tion version of the compiler. We can explore a representation of EIN notation that can indicate
potential for vectorization that may not be straightforward otherwise.
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Chapter 8

Conclusion

Diderot is a domain-specific language for visualization algorithms. Diderot provides the program-
mer with a very-high-level programming model based on the concepts and notations of tensor
calculus, which allows the algorithms to be expressed in their natural mathematical notation. We
have presented the design of EIN notation to represent these tensor and field operations in the
Diderot compiler. We have described the implementation and techniques used to make optimiza-
tions.
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Appendix A

Term Rewriting

A.1 Rewrite Rules

As expressions get more complicated it can be difficult to find instances of rules that are embedded.
This section reviews the rewrite rules that are applied in order to make domain-specific optimiza-
tions, tensor calculus, and other simplifications. The rewrite rules are written using the index
notation described in the implementation section. We will add three new expressions χ, ρ ,and θ
to simplify how the rules are expressed.

χ ::= s Constant

| ĩ Index
| T[] real

ρ ::= δij Deltas
| E Epsilon

θ ::= + addition
| − subtraction

The rules are divided and discussed here by their goals in mind. Algebraic rules uses algebraic
principals like distributivity. Index optimization rules are those that are possible by comparing
indices. Various rewrites are created so differentiation and probe operations work primarily on the
fields. Additionally, some rules aim to flatten or simplify expressions. Finally, the generic rules are
implemented for each expression when no other rule applies.

Algebraic Rules Several algebraic rules are used to make a cost-effective expression, Rules
(A.1- A.6). Rules (A.7-A.10) are used to show the distributive property of EIN operators, such
as (a + b)c =⇒ ac + bc (A.7). Summations are distributed so that the compiler can apply index-
based optimization independently (A.8) The Apply operator is distributed to each addition and
subtraction subexpression. So expressions like ∇(ϕ1 + ϕ2) =⇒ ∇ϕ1 +∇ϕ2 and ∇ · (ϕ1 + ϕ2) =⇒
(∇ · ϕ1) + (∇ · ϕ2) can be supported with just one single rule (A.10).

A.1 (a− b)− e2 =⇒ a− (b+ e2)

A.2 e1 − (c− d) =⇒ (e1 − c) + d

A.3 (a− b)− (c− d) =⇒ (a+ d)− (b+ c)

A.4
a
b
c =⇒ a

bc
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A.5 a
b
c

=⇒ ac
b

A.6
a
b
c
d

=⇒ ad
bc

A.7 (e1θe2)es =⇒ (e1es)θ(e2es)

A.8 Σ(e1θe2) =⇒ (Σe1)θ(Σe2)

A.9 (FθG)@, x =⇒ (F@x)θ(G@x)

A.10 ∇ � (e1θe2) =⇒ (∇ � e1)θ(∇ � e2)

Index Optimization ρ expressions are anticipated with summation symbol that bind their in-
dices. Summation indices can only occur twice in an EIN expressions. The extra summation
constructor adds extra book-keeping and causes us to look for the identity in many different forms.
Epsilons are used to represent a relationship between the indices in the cross product of ten-
sors or in the Curl of a field. Two Epsilons with a shared index can be rewritten to deltas,
EijkEilm =⇒ δjlδkm − δjmδkl (B.1 -B.3). Naturally, the next step would be to distribute the deltas
to the remainder of the expression. A δij expression can be applied to tensors, fields, convolution,
and partial expressions, replacing a instance of j with i (B.4-B.7). When two of the indices in Eijk
are repeated in the tensor or differentiation operator than the result is zero (Rule B.8-Rule B.9)

When an index is removed from a tensor because of a ρ, rewrite, then it is also removed from
the summation index. Rule (B.10) is used for clean up. A χ has no variable index and moved
outside ( B.11).

B1 Σ(c1c2, Ei−−Ei−−e1e2es) =⇒ e′

Σ(c1, Ei−− ∗ e1) ∗ Σ(c2, Ei−− ∗ e2) ∗ es =⇒ e′

B2 EijkEilm =⇒ δjlδkm − δjmδkl

Σi,c(EijkEilmp) =⇒ Σc(δjlδkmp)− (Σcδjmδklp)

B3 Σc1c2(Ei−− ∗ Ei−− ∗ p1 ∗ p2) =⇒ e′

Σc1(Ei−− ∗ Σc2(Ei−− ∗ p1) ∗ p2) =⇒ e′

B4 Σjc, δijTj =⇒ ΣcTi

B5 Σj,cδijFj =⇒ ΣcFi

B6 Σjc(∇j � (δije)) =⇒ Σc∇i � (e)

B7 Σjc(δijv ~ hδcj ) =⇒ Σc(v ~ hδci)

B8 EijkTjk =⇒ 0

B9 Σc(∇ij � (Eijke)) =⇒ 0

B10 Σ([], e) =⇒ e

B11 Σχe =⇒ χ(Σe)
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Push operators to Fields The Apply expression is used to express the differentiation of a field.
This extra constructor allows us to keep track of the field differentiation without allowing partial
expressions to get lost in embedded ein expressions. The disadvantage of the constructor is extra
book-keeping. The goal of Rules (C1-C6) is to push the apply operator down to the fields in the
subexpression. The apply operator is pushed down until there are no more operators and the
subexpression is just a constant, ρ, tensor or field expression(C1-C3). For instance (C1) supports
expression ∇(sϕ) =⇒ s∇ϕ. Although, the Diderot language has yet to support the product of
fields, we have the chain rule (C4). The differentiation is pushed to the numerator of the division
operator (C5). When Diderot supports the division of scalar fields this will be replaced with the
quotient rule. The differentiation of a field, is expressed in the kernel of the convolution expression
(C6). The differentiation index is pushed down to the kernels in a convolution expression , i.e.
∇(v ~ h) =⇒ v ~∇h. At the end of the normalization phase the � expression is gone.

The goal of the probe rewrites is to push the probe down to field expressions. Non-Field opera-
tors are pushed outside the Probe (C7-C11). This helpful rewrite allows us to make computations
on the tensor result rather than the entire field. (−F )(x) =⇒ −(F (x)) .

C1 ∇ � (χ ∗ e) =⇒ χ(∇ � e)

C2 ∇ � (ρ ∗ e) =⇒ ρ(∇ � e)

C3 ∇ � Σ(c, e) =⇒ Σ(∇ � e)

C4 ∇ � (e1 ∗ e) =⇒ (e1(∇ � e)) + (e(∇ � e1))

C5 ∇ � ( e1e2 ) =⇒ (∇�e1)
e2

C6 ∇p � (v ~ hd) =⇒ (v ~ hd,p)

C7 (−e)@x =⇒ −(e@x)

C8 (χe)@x =⇒ χ(e@x)

C9 (Tαe)@x =⇒ Tα(e@x)

C10 (F/s)@, x =⇒ (F@x)/s

C11 Σ(c, e)@x =⇒ Σ(c, e@x)

Concise Rules These rules just combine operators and flatten EIN expressions.

D1 e1
e2
es =⇒ e1es

e2

D2 e1 ∗ (e2 ∗ es) =⇒ (e1 ∗ e2 ∗ es)

D3 ∇[] � e =⇒ e

D4 ∇i � (∇j � e1) =⇒ (∇ij � e1)

D5 ∇ � χ =⇒ 0

D6 Σν(Σµ(e)) =⇒ Σνµe

D7 0e =⇒ 0

D8 0 + e =⇒ e
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Generic Rules Generally these rules apply when no other rules apply.

Negation
e =⇒ e′

−e =⇒ −e′

Addition, Subtraction
e1 =⇒ e′1 & e2 =⇒ e′2

e1θe2 =⇒ e′1θe
′
2

Product
e1 =⇒ e′1 & es =⇒ es′

e1 ∗ es =⇒ e′1 ∗ es′

Division
e1 =⇒ e′1 & e2 =⇒ e′2

e1
e2

=⇒ e′1
e′2

Summation
e =⇒ e′

Σe =⇒ Σe′

Probe
e =⇒ e′ & x =⇒ x′

e@x =⇒ e′@x′

Apply
e1 =⇒ e′1 & e2 =⇒ e′2

e1 � e2 =⇒ e′1 � e′2

A.2 Proof

This section provides several proofs for the previously introduced index-based rules.
EijkEiqr =⇒ δjqδkr − δjrδkq (B.2). Consider the product of two E expressions as

EijkEpqr =⇒

∣∣∣∣∣∣
δip δiq δir
δjp δjq δjr
δkp δkq δkr

∣∣∣∣∣∣
=⇒ δip(δjqδkr − δjrδkq) +δiq(δjrδkp − δjpδkr) +δir(δjpδkq − δjqδkp)
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Then when the expressions have a common index such as p = i we have

=⇒ δiiδjqδkr − δiiδjrδkq δiqδjrδki − δiqδjiδkr δirδjiδkq − δirδjqδki

and using δxzδzy = δxy and δii = 3 we have

=⇒ 3δjqδkr − 3δjrδkq δkqδjr − δjqδjr δjrδkq − δkrδjq

=⇒ δjqδkr − δjrδkq

Next, lets consider the rule (B.8). Eijk ∂
∂xi,xj

=⇒ 0

Eijk ∂
∂xi,xj

=⇒ Eijk ∂
∂xj ,xi

swap order

=⇒ −Ejik ∂
∂xj ,xi

anti-cyclic

=⇒ −Eijk ∂
∂xi,xj

i →j j →i
=⇒ 0

A.3 Identities

This section walks through examples of tensor calculus identities found by using these rewrites.
Consider the expressions,

e = a× (b× c)

The cross product is transformed to two operators as

d = λ(A,B)〈ΣyzExyzAyBz〉x(b, c)

e = λ(A,B)〈ΣjkEijkAjBk〉i(a, d)

In high-IL, the EIN operators would be represented with a single EIN operator. The outer index
for EIN operator d x will be mapped to the variable indices in Bk. In this case x =⇒ k. The other
variable indices in EIN operator d would be shifted y =⇒ l and z =⇒ m.

d′ = λ(A,B)〈ΣlmEklmAlBm〉k(b, c)

The resulting operator is written as

e′ = λ(A,B,C)〈ΣjkEijkAj(ΣlmEklmBlCm)〉i(a, b, c)

The expression is rewritten as

e′ = λ(A,B,C)〈ΣjklmEijkEklmAjBlCm〉i(a, b, c)

=⇒ λ(a, b, c)〈Σjlm(δilδjmajblcm)− Σjlm(δim δjkajblcm)〉i[B3, B2]

e =⇒ e′

=⇒ λ(a, b, c)〈Σj(ajbicj)− Σj(ajbjci)〉i[B4]

The tensor rewrites in the following table go through a similar process of rewriting.
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Surface Language Ein Ops

(a× b)× c =⇒ b(a · c)− a(b · c) λ(u, v, t)〈ΣjkEijk(ΣlmEjlmulvm)tk〉i
=⇒ λ(u, v, t)〈Σk(ukvitk)− (uivktk)〉i

a× (b× c) =⇒ b(a · c)− c(a · b) λ(a, b, c)〈ΣjkEijkaj(ΣlmEklmblcm)〉i
=⇒ λ(a, b, c)〈Σjlm(δilδjm − δimδjk)ajblcm〉i
=⇒ λ(a, b, c)〈Σj(ajbicj)− (ajbjci)〉i

(a× b)× (c× d) ΣjkEijk((ΣlmEjlmalbm)(ΣnoEknocndo))
=⇒ ΣklmnoEkno(δklδim − δkmδil)(albmcndo)
=⇒ (ΣknoEknoakbicndo)− (ΣknoEknoaibkcndo)

(a× b) · (c× d) =⇒ (a · c)(b · d)− (a · d)(b · c) Σi((ΣjkEijkajbk)(ΣlmEilmcldm))
=⇒ Σjklm(δjlδkmajbkcldm)− (δjmδklajbkcldm)
=⇒ Σjk(ajbkcjdk)− (ajbkckdj)

Another example is field identity ∇ · (∇× F ) =⇒ 0. This is expressed with two EIN operators as

c = λf

〈
ΣjkEijk

∂

∂xj
fk

〉
i

(F )

t = λf

〈
Σi

∂

∂xi
fi

〉
(c)

Then in high-IL as one EIN operator as

t = λf

〈
Σi

∂

∂xi
(ΣjkEijk

∂

∂xj
fk)

〉
(F )

In the optimization stage this expression does through the following rewrites

=⇒ λf

〈
ΣiΣjk

∂

∂xi
Eijk

∂

∂xj
fk

〉
(F )[C3]

=⇒ λf

〈
Σijk

∂

∂xi
Eijk

∂

∂xj
fk

〉
(F )[D6]

=⇒ λf

〈
ΣijkEijk

∂

∂xi

∂

∂xj
fk

〉
(F )[C2]

=⇒ λf

〈
ΣijkEijk

∂

∂xij
fk

〉
(F )[D4]

=⇒ λf〈0〉(F )[B9]

Other field rewrites are expressed in the following table.

Surface Language Ein Ops

∇(sϕ) =⇒ s∇ϕ λ(sϕ)
〈

∂
∂xi
sϕ
〉
i

=⇒ λ(sϕ)
〈
s ∂
∂xi
ϕ
〉
i

.

∇×∇ϕ =⇒ 0 λϕ
〈

ΣjkEijk ∂
∂xj

( ∂
∂xk

ϕ)
〉
i

=⇒0

∇ · (∇× F ) =⇒ 0 λf
〈

Σi
∂
∂xi

Σjk(Eijk ∂
∂xj

fk)
〉

(F ) =⇒0

∇(ϕ1 + ϕ2) =⇒ ∇ϕ1 +∇ϕ2 λ(ϕ1ϕ2)
〈

∂
∂xi

(ϕ1 + ϕ2)
〉
i

=⇒ λ(ϕ1ϕ2)
〈

( ∂
∂xi
ϕ1) + ( ∂

∂xi
ϕ2)
〉
i

∇× (F +G) =⇒ (∇× F ) + (∇×G)

〈
∂
∂x0

¯

(F1
¯

+G1
¯
)− ∂

∂x1
¯

(F0
¯

+G0
¯
)

〉
=⇒ λ(F,G)

〈
∂
∂x0

¯

F1
¯
− ∂

∂x1
¯

F0
¯

+ ∂
∂x0

¯

G1
¯
− ∂

∂x1
¯

G0
¯

〉
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