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Portable parallelism

The challenge of portable parallelism

Wide range of parallel hardware with varying memory architectures:
I CMP (multicore): shared cache, uniform shared memory.
I SMP: separate caches, non-uniform shared memory (NUMA).
I GPUs: wide-vector instructions, explicit memory hierarchy, distributed

memory.
I Cluster: separate caches and distributed memory.
I Supercomputer: specialized interconnects, heterogeneous architectures,

etc.

And we have a wide range of parallel applications.
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Portable parallelism

Portable parallel programming

Image analysis

Video encoding

Ray tracer

Portfolio valuation

Computer Game

Supercomputers

Clusters

SMP/CMP

GPU

Applications Platforms

Program

Program

The Ideal: write once, run everywhere, for any application
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Portable parallelism

Portable parallel programming

Image analysis

Video encoding

Ray tracer

Portfolio valuation

Computer Game

Supercomputers

Clusters

SMP/CMP

GPU

Applications Platforms

Program

Program

Manticore: restrict platforms
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Portable parallelism

Portable parallel programming

Image analysis

Video encoding

Ray tracer

Portfolio valuation

Computer Game

Supercomputers

Clusters

SMP/CMP

GPU

Applications Platforms

Program

Diderot: restrict applications (also Spiral and Delite)
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Diderot

Diderot

Diderot is a cross-discipline project involving
I Biomedical image analysis and visualization
I Programming language design and implementation

Plan: use ideas from programming languages to improve the state of the art in
image-analysis and visualization.

Joint work with Gordon Kindlmann and students Charisee Chiw, Lamont
Samuels, and Nick Seltzer.
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Diderot

Why image analysis is important

Physical object Image data Computational
representation

Imaging Visualization

Analysis

Scientists need tools to extract structure from many kinds of image data.
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Diderot

Image analysis and visualization

I We are interested in a class of algorithms that compute geometric
properties of objects from imaging data.

I These algorithms compute over a continuous tensor field that is
reconstructed from discrete data using a separable convolution kernel.

⊛

Continuous fieldDiscrete image data
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Diderot

Image analysis and visualization (continued ...)

Examples include
I Direct volume rendering (requires

reconstruction, derivatives)
I Fiber tractography (requires tensor

fields)
I Particle systems (requires dynamic

numbers of computational elements)
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Diderot

Image analysis and visualization (continued ...)

Examples include
I Direct volume rendering (requires

reconstruction, derivatives)
I Fiber tractography (requires tensor

fields)
I Particle systems (requires dynamic

numbers of computational elements)
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Diderot

DSL for image analysis

Diderot is a parallel DSL for image analysis and visualization algorithms.

We have two main design goals for Diderot:
I Provide a high-level mathematical programming model that abstracts

away from discrete image data and the target architecture.
I Use domain knowledge to get good performance on a range of parallel

platforms, without requiring an understanding of parallel programming.

Note: Diderot is not an embedded DSL.
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Diderot

Diderot programming model

I The Diderot programming model is based on a collection of mostly
autonomous strands that are embedded in a continuous tensor field.

I Each strand has a state and an update method, which encapsulates the
computational kernel of the algorithm.

I Diderot abstracts away from details such as the discrete image-data, the
representation of reals (float vs double), and the target machine (e.g.,
CPU vs GPU).

I The computational kernel of a Diderot program is expressed using the
concepts and direct-style notation of tensor calculus. These include
tensor operations (•, ⇥) and higher-order field operations (r), etc.

I No shared mutable state.
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Diderot

Diderot parallelism model
Bulk-synchronous parallel with “deterministic” semantics.

execution
step

strands

update

idle

read

spawn

global computation

global computation

strand state

new

die

Note: the current language implements a subset of this model.
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Diderot

Example — Curvature
field#2(3)[] F = bspln3 ~ load("quad-patches.nrrd");
field#0(2)[3] RGB = tent ~ load("2d-bow.nrrd");
· · ·
strand RayCast (int ui, int vi) {

· · ·
update {

· · ·
vec3 grad = -rF(pos);
vec3 norm = normalize(grad);
tensor[3,3] H = r⌦rF(pos);
tensor[3,3] P = identity[3] - norm⌦norm;
tensor[3,3] G = -(P•H•P)/|grad|;
real disc = sqrt(2.0*|G|ˆ2 - trace(G)ˆ2);
real k1 = (trace(G) + disc)/2.0;
real k2 = (trace(G) - disc)/2.0;
vec3 matRGB = // material RGBA

RGB([max(-1.0, min(1.0, 6.0*k1)),
max(-1.0, min(1.0, 6.0*k2))]);

· · ·
}

· · ·
}

k2

k1

(1,1)

(-1,-1)
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Diderot

Example — 2D Isosurface

· · ·
strand sample (int ui, int vi) {
output vec2 pos = · · ·;

// set isovalue to closest of 50, 30, or 10

real isoval = 50.0 if F(pos) >= 40.0
else 30.0 if F(pos) >= 20.0
else 10.0;

int steps = 0;
update {

if (!inside(pos, F) || steps > stepsMax)
die;

vec2 grad = rF(pos);
// delta = Newton-Raphson step

vec2 delta = normalize(grad) * (F(pos) - isoval)/|grad|;
if (|delta| < epsilon)

stabilize;
pos = pos - delta;
steps = steps + 1;

}
}
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Implementation issues

Diderot compiler and runtime

I Compiler is 21,000 lines of SML (2,500 in front-end).
I Multiple backends: vectorized C and OpenCL (CUDA under

construction).
I Multiple runtimes: Sequential C, Parallel C, OpenCL.
I Designed to generate libraries, but also supports standalone executables.
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Implementation issues

Probing tensor fields
A probe gets compiled down into code that maps the world-space coordinates
to image space and then convolves the image values in the neighborhood of
the position.

⊛h

Continuous fieldDiscrete image data

FV

In 2D, the reconstruction is (recall that h is separable)

F(x) =
sX

i=1�s

sX

j=1�s

V[n + hi, ji]h(f
x

� i)h(f
y

� j)

where s is the support of h, n = bM

�1
xc and f = M

�1
x � n.
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Implementation issues

Probing tensor fields (continued ...)

In general, generating the probe operations is more challenging.
The first step is to normalize field expressions. For example,

r(s⇤(V ~ h)) ) s⇤(r(V ~ h))

) s⇤(V ~ (rh))

In the implementation, we view r as a “tensor” of partial-derivative operators

r =

"
@
@x

@
@y

#
r⌦r =

"
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2
@2

@xy
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#
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Implementation issues

Probing tensor fields (continued ...)

Each component in the partial-derivative tensor corresponds to a component
in the result of the probe.

V ~ (rh) = V ~
"

@
@x

h
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@y

h

#

=

" P
s
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s

i=1�s

P
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#

A later stage of the compiler expands out the evaluations of h and h

0.

Probing code has high arithmetic intensity and is a good candidate for
vectorization and GPUs.
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Targeting GPUs

Targeting GPUs

I Standard GPGPU programming models (CUDA and OpenCL) are
low-level and expose hardware details.

I Diderot frees the programmer from those issues, but the compiler and
runtime must still handle them.

I We need to be smart about memory access and divergence.
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Targeting GPUs

Nividia’s Fermi architecture

Shared L2 Cache (768 Kb)
Shared
Global

Memory

I Multi-processor compute units share L2 cache and global memory.
I

Single-Instruction, Multiple-Thread execution model.
I Each warp (32 threads) executes the same instruction.
I Predication used to handle divergent control flow.
I Each compute unit runs its own warps.
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Targeting GPUs

Fermi Compute Unit (CUDA 2.0)
Dispatch two half-warps per clock.

16-cores 16-cores 16 load/store units

32K by 32-bit register file
(holds thread state)

64Kb L1 cache/local memory

warp scheduler/dispatch unit warp scheduler/dispatch unit

Instruction cache
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Targeting GPUs

OpenCL Parallelism Model
Grid of work items (threads) organized into work groups.

Work group

Work item

Standard approach: map data to the grid and run data-parallel computation.
This approach does not work well for irregular workloads.
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Targeting GPUs

Persistent threads
[Hoberock et al. 2009; Parker 2010; Wald 2011]
Instead of using the GPU scheduler, each workgroup runs a 32-wide parallel
strand scheduler (64-wide on AMD hardware).

32×1 work items = 1 warp

strand block strand block

Work queue

Each scheduler runs strand update methods until there are no more blocks.
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Targeting GPUs

Avoiding divergence

Each execution step is divided into two phases: update and compaction.

Update kernel

Compact kernel

execution
step

When occupancy gets too low, we compact across blocks.
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Targeting GPUs

Latency hiding
To hide memory latency, we run multiple workgroups per GPU compute unit.

Number of workers per CU
1 2 3 4 5 6 7 8 9 10
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lic2d

Runtime system could adjust the number of cores dynamically.
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Performance

Experimental framework

I Compare four versions of benchmarks: Teem/C, Sequential Diderot,
Parallel Diderot, GPU Diderot.

I SMP machine: 8-core MacPro with 2.93 GHz Xeon X5570 processors
(SSE-4)

I GPU machine: Linux box with NVIDIA Tesla C2070 (14⇥32 cores).
I Four typical benchmark programs

I
vr-lite — simple volume-renderer with Phong shading running on CT
scan of hand

I
illust-vr — fancy volume-renderer with cartoon shading running on CT
scan of hand

I
lic2d — line integral convolution in 2D running on synthetic data

I
ridge3d — particle-based ridge detection running on lung data
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Performance

SMP scaling
Parallel performance scaling with respect to sequential Diderot.

Number of threads
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Performance

Performance comparison
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Note that ridge3d triggers a bug in NVIDIA’s OpenCL compiler.
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Future research

Language evolution

I Dynamic strand creation.
I Strand-strand interactions.
I Global computation mechanisms.
I Type inference and dimension polymorphism.
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Future research

Long-term goals

In the future, we would like to generalize this work in two directions:
I Extend Diderot to other classes of algorithms (e.g., object recognition).
I Generalize approach to other domains.
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Conclusion

Conclusion

Domain-specific languages can provide both high-level notation and portable
parallel performance.
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Conclusion

Questions?

http://diderot-language.cs.uchicago.edu
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