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Introduction

Diderot

Diderot is a cross-discipline project involving
I Scientific visualization
I Programming languages

We are trying to use ideas from programming languages to improve the state
of the art in image-analysis and visualization.

Joint work with Gordon Kindlmann and Lamont Samuels.
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Image analysis

Why image analysis is important

Physical object Image data Computational
representation

Imaging Visualization

Analysis

Scientists need tools to extract structure from many kinds of image data.
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Image analysis

Image analysis and visualization

I We are interested in a class of algorithms that compute a geometric
properties of some object from imaging data.

I These algorithms compute over a continuous field that is reconstructed
from discrete data.

⊛

Continuous fieldDiscrete image data
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Image analysis

Image analysis and visualization (continued ...)

Examples include
I Direct volume rendering (requires

reconstruction, derivatives)
I Fiber tractography (requires tensor

fields)
I Particle systems
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Image analysis

We want domain-specific support for image analysis

We have three design goals:
I Provide a high-level mathematical programming model that abstracts

away from discrete image data and the target architecture.
I Use domain knowledge to get good performance on a range of parallel

platforms.
I Make it possible for scientists to develop their own image analyses and

visualizations (“Matlab” for image analysis).
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Approaches

Approaches to domain-specific programming

There are three common approaches to supporting domain-specific
programming:

1. Libraries; e.g., VTK/ITK, OpenCV, Teem, ...

2. Embedded domain-specific languages (EDSL); e.g., many Haskell
examples, Ct (C++), Delite (Scala), ...

3. Domain-specific languages (DSL); e.g., R, Renderman, TEX, ...
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Approaches

Comparing approaches

Impl. Client
Notation Optimization Parallelism Effort Effort

Library - 0 - + -

EDSL - + + 0 0

DSL + + + - +
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Approaches

Comparing approaches

Impl. Client
Notation Optimization Parallelism Effort Effort

Library - 0 - + -

EDSL - + + 0 0

DSL + + + - +

In our case, Diderot is a small language, so the extra implementation effort
over an EDSL is small (front-end is 2,600 lines of SML code).
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Programming model

Diderot programming model

I The Diderot programming model is based on a collection of mostly
autonomous actors that are embedded in a continuous tensor field.

I Actors compute in a bulk-synchronous style.
I Diderot abstracts away from details such as the image-data format, the

representation of reals (float vs double), and the target machine (e.g.,
CPU vs GPU).
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Programming model

Value types

Diderot has several types of values, including booleans, integers, and strings.
The most important type of values are tensors.

shape

tensor[d1, . . . , dn]

This type describes an n-order tensor, where n ≥ 0 and the di > 1.
We provide type aliases for common shapes; e.g.,

real = tensor[]
vec3 = tensor[3]

We also normalize tensor[1] to tensor[], etc.
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Programming model

Image types

Images are used to represent the data sets that we are analyzing, as well as
other array data, such as transfer functions.

shape

image(d)[d1, . . . , dn]

dimension

where d > 0, n ≥ 0, and the di > 1.
The image type abstracts away from the on-disk representation of the data.
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Programming model

Kernel types

Kernels are used to reconstruct continuous fields from images.

kernel#k

levels of continuity

where k ≥ 0.
We currently restrict ourselves to separable, piecewise polynomial kernel
functions with rational coefficients.
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Programming model

Field types

Fields are an abstract representation of functions from some vector space to
tensors.

shape

field#k(d)[d1, . . . , dn]

dimension

levels of continuity

where k ≥ 0, d > 0, and the di > 1.
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Programming model

Typechecking

The typing rules keep track of the dimensions, shapes, etc.
For example, here is the rule for convolution

Γ ` V : image(d)[σ] Γ ` h : kernel#k
Γ ` V~h : field#k(d)[σ]

and for differentiation

Γ ` F : field#k(d)[σ] k > 0 k′ = k − 1
Γ ` ∇F : field#k′(d)[σ, d]
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Programming model

Probing tensor fields

I The key operation in Diderot is probing a continuous field to discover its
value at some position.

I A Diderot programmer might write code like the following

(∇ (img ~ bspln3))@pos

which probes a field at position pos, where the field is the first derivative
of the field reconstructed by applying the convolution kernel bspln3 to
the image data img.

I The typing rule for probing a field is

Γ ` F : field#k(d)[σ] Γ ` p : tensor[d]

Γ ` F@p : tensor[σ]
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Programming model

Diderot program structure

A Diderot program has three parts:

1. Global definitions, including inputs.

2. Actor definitions, which are the computational agents.

3. Initialization, which defines an initial collection of actors.
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Programming model

Actors

I Each actor has a state, which includes its position and an update
method.

I Some state variables are annotated as outputs.
I The execution model is bulk synchronous: at each iteration, every actor’s

state is updated independently.
I The system iterates until a termination condition is met.
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Programming model

Example: Maximum intensity projection

MIP is a volume rendering technique that
computes the maximum intensity value along
rays that are cast into the field.
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Programming model

Example: Maximum intensity projection (continued ...)

input string dataFile; // name of dataset
input real stepSz; // size of steps
input vec3 eye; // location of eye point
input vec3 orig; // location of pixel (0,0)
input vec3 cVec; // vector between pixels horizontally
input vec3 rVec; // vector between pixels vertically

image(3)[] img = load (dataFile);
field#1(3)[] F = img ~ bspln3;
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Programming model

Maximum intensity projection (continued ...)

actor RayCast (int row, int col)
{

vec3 pos = orig + real(row)*rVec + real(col)*cVec;
vec3 dir = (pos - eye) / |pos - eye|;
real t = 0.0;
output real maxval = -∞;

update
{

pos = pos + stepSz*dir;
maxval = max (F@pos, maxval);
if (t > 20)

stabilize;
t = t + stepSz;

}
}

initially [ RayCast(r, c) | r in 0..199, c in 0..199 ];
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Technical issues

Probing tensor fields

A probe gets compiled down into code that maps the real-valued coordinates
to integers that index the image data. It then samples the image values in the
neighborhood of the integer coordinates to compute the result of the probe.

⊛h

Continuous fieldDiscrete image data

This process is similar to texture filtering in Graphics, but it has stronger
mathematical requirements.
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Technical issues

Exploiting domain knowledge
There are many opportunities to exploit domain knowledge to gain better
performance.

One example is the code

posi+1 = posi + stepSz ∗ dir;
maxvali+1 = max(F@posi+1, maxvali);

To probe the field F, we need to map posi+1 into image space. Using domain
knowledge (linear algebra), we can apply strength reduction.

posimg
i+1 = M−1posi+1

= M−1(posi + stepSz ∗ dir)

= M−1posi + M−1(stepSz ∗ dir)

= posimg
i + delta
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Technical issues

Staged computation

Using staged computation (e.g., partial evaluation) to specialize the code for
properties of the image-data.

a.diderot Parser + 
typechecker

Expander

data.nrrd

AST

IL Optimizer IL

Code 
generator

a.out
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Technical issues

Other issues

I Type inference and dimension polymorphism.
I Compiler architecture and internal representations that support multiple

parallel targets.
I Compiler and runtime techniques to automatically handle very large

images.
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Future research

Long-term goals

In the future, we would like to generalize this work in two directions:

1. Extend Diderot to other classes of algorithms (e.g., object recognition).

2. Generalize approach to other domains.

September 6, 2010 Diderot A parallel domain-specific language for image analysis 25



Conclusion

Status

I First version of language design is done
I Parser and typechecker have been implemented
I Working on naı̈ve code generator with limited optimization that targets

OpenCL.
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Conclusion

Portable parallel programming

Image analysis

Video encoding

Ray tracer

Computer games

Web server

Supercomputers

Clusters

SMP/Multicore

GPU

Applications Platforms

Program

Program

The Ideal: write once, run everywhere, for any application
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Image analysis

Video encoding

Ray tracer

Computer games

Web server

Supercomputers

Clusters

SMP/Multicore

GPU

Applications Platforms

Program

Program

Program

Program

The Reality: write once per platform per application
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Portable parallel programming

Image analysis

Video encoding

Ray tracer

Computer games

Web server

Supercomputers

Clusters

SMP/Multicore

GPU

Applications Platforms

Program

Program

Manticore: restrict platforms
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Portable parallel programming

Image analysis

Video encoding

Ray tracer

Computer games

Web server

Supercomputers

Clusters

SMP/Multicore

GPU

Applications Platforms

Program

Diderot: restrict applications
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Conclusion

Questions?
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