
Diderot
A parallel domain-specific language

for image analysis

John Reppy

University of Chicago

September 6, 2010

Introduction

Diderot

Diderot is a cross-discipline project involving
I Scientific visualization
I Programming languages

We are trying to use ideas from programming languages to improve the state
of the art in image-analysis and visualization.

Joint work with Gordon Kindlmann and Lamont Samuels.

September 6, 2010 Diderot A parallel domain-specific language for image analysis 2

Image analysis

Why image analysis is important

Physical object Image data Computational
representation

Imaging Visualization

Analysis

Scientists need tools to extract structure from many kinds of image data.

September 6, 2010 Diderot A parallel domain-specific language for image analysis 3

Image analysis

Image analysis and visualization

I We are interested in a class of algorithms that compute a geometric
properties of some object from imaging data.

I These algorithms compute over a continuous field that is reconstructed
from discrete data.

⊛

Continuous fieldDiscrete image data

September 6, 2010 Diderot A parallel domain-specific language for image analysis 4

Image analysis

Image analysis and visualization (continued ...)

Examples include
I Direct volume rendering (requires

reconstruction, derivatives)
I Fiber tractography (requires tensor

fields)
I Particle systems

September 6, 2010 Diderot A parallel domain-specific language for image analysis 5

Image analysis

Image analysis and visualization (continued ...)

Examples include
I Direct volume rendering (requires

reconstruction, derivatives)
I Fiber tractography (requires tensor

fields)
I Particle systems

September 6, 2010 Diderot A parallel domain-specific language for image analysis 5

Image analysis

Image analysis and visualization (continued ...)

Examples include
I Direct volume rendering (requires

reconstruction, derivatives)
I Fiber tractography (requires tensor

fields)
I Particle systems

September 6, 2010 Diderot A parallel domain-specific language for image analysis 5

Image analysis

Image analysis and visualization (continued ...)

Examples include
I Direct volume rendering (requires

reconstruction, derivatives)
I Fiber tractography (requires tensor

fields)
I Particle systems

September 6, 2010 Diderot A parallel domain-specific language for image analysis 5

Image analysis

We want domain-specific support for image analysis

We have three design goals:
I Provide a high-level mathematical programming model that abstracts

away from discrete image data and the target architecture.
I Use domain knowledge to get good performance on a range of parallel

platforms.
I Make it possible for scientists to develop their own image analyses and

visualizations (“Matlab” for image analysis).

September 6, 2010 Diderot A parallel domain-specific language for image analysis 6

Image analysis

We want domain-specific support for image analysis

We have three design goals:
I Provide a high-level mathematical programming model that abstracts

away from discrete image data and the target architecture.
I Use domain knowledge to get good performance on a range of parallel

platforms.
I Make it possible for scientists to develop their own image analyses and

visualizations (“Matlab” for image analysis).

September 6, 2010 Diderot A parallel domain-specific language for image analysis 6

Image analysis

We want domain-specific support for image analysis

We have three design goals:
I Provide a high-level mathematical programming model that abstracts

away from discrete image data and the target architecture.
I Use domain knowledge to get good performance on a range of parallel

platforms.
I Make it possible for scientists to develop their own image analyses and

visualizations (“Matlab” for image analysis).

September 6, 2010 Diderot A parallel domain-specific language for image analysis 6

Image analysis

We want domain-specific support for image analysis

We have three design goals:
I Provide a high-level mathematical programming model that abstracts

away from discrete image data and the target architecture.
I Use domain knowledge to get good performance on a range of parallel

platforms.
I Make it possible for scientists to develop their own image analyses and

visualizations (“Matlab” for image analysis).

September 6, 2010 Diderot A parallel domain-specific language for image analysis 6

Approaches

Approaches to domain-specific programming

There are three common approaches to supporting domain-specific
programming:

1. Libraries; e.g., VTK/ITK, OpenCV, Teem, ...

2. Embedded domain-specific languages (EDSL); e.g., many Haskell
examples, Ct (C++), Delite (Scala), ...

3. Domain-specific languages (DSL); e.g., R, Renderman, TEX, ...

September 6, 2010 Diderot A parallel domain-specific language for image analysis 7

Approaches

Approaches to domain-specific programming

There are three common approaches to supporting domain-specific
programming:

1. Libraries; e.g., VTK/ITK, OpenCV, Teem, ...

2. Embedded domain-specific languages (EDSL); e.g., many Haskell
examples, Ct (C++), Delite (Scala), ...

3. Domain-specific languages (DSL); e.g., R, Renderman, TEX, ...

September 6, 2010 Diderot A parallel domain-specific language for image analysis 7

Approaches

Approaches to domain-specific programming

There are three common approaches to supporting domain-specific
programming:

1. Libraries; e.g., VTK/ITK, OpenCV, Teem, ...

2. Embedded domain-specific languages (EDSL); e.g., many Haskell
examples, Ct (C++), Delite (Scala), ...

3. Domain-specific languages (DSL); e.g., R, Renderman, TEX, ...

September 6, 2010 Diderot A parallel domain-specific language for image analysis 7

Approaches

Approaches to domain-specific programming

There are three common approaches to supporting domain-specific
programming:

1. Libraries; e.g., VTK/ITK, OpenCV, Teem, ...

2. Embedded domain-specific languages (EDSL); e.g., many Haskell
examples, Ct (C++), Delite (Scala), ...

3. Domain-specific languages (DSL); e.g., R, Renderman, TEX, ...

September 6, 2010 Diderot A parallel domain-specific language for image analysis 7

Approaches

Comparing approaches

Impl. Client
Notation Optimization Parallelism Effort Effort

Library - 0 - + -

EDSL - + + 0 0

DSL + + + - +

September 6, 2010 Diderot A parallel domain-specific language for image analysis 8

Approaches

Comparing approaches

Impl. Client
Notation Optimization Parallelism Effort Effort

Library - 0 - + -

EDSL - + + 0 0

DSL + + + - +

In our case, Diderot is a small language, so the extra implementation effort
over an EDSL is small (front-end is 2,600 lines of SML code).

September 6, 2010 Diderot A parallel domain-specific language for image analysis 8

Programming model

Diderot programming model

I The Diderot programming model is based on a collection of mostly
autonomous actors that are embedded in a continuous tensor field.

I Actors compute in a bulk-synchronous style.
I Diderot abstracts away from details such as the image-data format, the

representation of reals (float vs double), and the target machine (e.g.,
CPU vs GPU).

September 6, 2010 Diderot A parallel domain-specific language for image analysis 9

Programming model

Diderot programming model

I The Diderot programming model is based on a collection of mostly
autonomous actors that are embedded in a continuous tensor field.

I Actors compute in a bulk-synchronous style.
I Diderot abstracts away from details such as the image-data format, the

representation of reals (float vs double), and the target machine (e.g.,
CPU vs GPU).

September 6, 2010 Diderot A parallel domain-specific language for image analysis 9

Programming model

Diderot programming model

I The Diderot programming model is based on a collection of mostly
autonomous actors that are embedded in a continuous tensor field.

I Actors compute in a bulk-synchronous style.
I Diderot abstracts away from details such as the image-data format, the

representation of reals (float vs double), and the target machine (e.g.,
CPU vs GPU).

September 6, 2010 Diderot A parallel domain-specific language for image analysis 9

Programming model

Value types

Diderot has several types of values, including booleans, integers, and strings.
The most important type of values are tensors.

shape

tensor[d1, . . . , dn]

This type describes an n-order tensor, where n ≥ 0 and the di > 1.
We provide type aliases for common shapes; e.g.,

real = tensor[]
vec3 = tensor[3]

We also normalize tensor[1] to tensor[], etc.

September 6, 2010 Diderot A parallel domain-specific language for image analysis 10

Programming model

Image types

Images are used to represent the data sets that we are analyzing, as well as
other array data, such as transfer functions.

shape

image(d)[d1, . . . , dn]

dimension

where d > 0, n ≥ 0, and the di > 1.
The image type abstracts away from the on-disk representation of the data.

September 6, 2010 Diderot A parallel domain-specific language for image analysis 11

Programming model

Kernel types

Kernels are used to reconstruct continuous fields from images.

kernel#k

levels of continuity

where k ≥ 0.
We currently restrict ourselves to separable, piecewise polynomial kernel
functions with rational coefficients.

September 6, 2010 Diderot A parallel domain-specific language for image analysis 12

Programming model

Field types

Fields are an abstract representation of functions from some vector space to
tensors.

shape

field#k(d)[d1, . . . , dn]

dimension

levels of continuity

where k ≥ 0, d > 0, and the di > 1.

September 6, 2010 Diderot A parallel domain-specific language for image analysis 13

Programming model

Typechecking

The typing rules keep track of the dimensions, shapes, etc.
For example, here is the rule for convolution

Γ ` V : image(d)[σ] Γ ` h : kernel#k
Γ ` V~h : field#k(d)[σ]

and for differentiation

Γ ` F : field#k(d)[σ] k > 0 k′ = k − 1
Γ ` ∇F : field#k′(d)[σ, d]

September 6, 2010 Diderot A parallel domain-specific language for image analysis 14

Programming model

Probing tensor fields

I The key operation in Diderot is probing a continuous field to discover its
value at some position.

I A Diderot programmer might write code like the following

(∇ (img ~ bspln3))@pos

which probes a field at position pos, where the field is the first derivative
of the field reconstructed by applying the convolution kernel bspln3 to
the image data img.

I The typing rule for probing a field is

Γ ` F : field#k(d)[σ] Γ ` p : tensor[d]

Γ ` F@p : tensor[σ]

September 6, 2010 Diderot A parallel domain-specific language for image analysis 15

Programming model

Probing tensor fields

I The key operation in Diderot is probing a continuous field to discover its
value at some position.

I A Diderot programmer might write code like the following

(∇ (img ~ bspln3))@pos

which probes a field at position pos, where the field is the first derivative
of the field reconstructed by applying the convolution kernel bspln3 to
the image data img.

I The typing rule for probing a field is

Γ ` F : field#k(d)[σ] Γ ` p : tensor[d]

Γ ` F@p : tensor[σ]

September 6, 2010 Diderot A parallel domain-specific language for image analysis 15

Programming model

Probing tensor fields

I The key operation in Diderot is probing a continuous field to discover its
value at some position.

I A Diderot programmer might write code like the following

(∇ (img ~ bspln3))@pos

which probes a field at position pos, where the field is the first derivative
of the field reconstructed by applying the convolution kernel bspln3 to
the image data img.

I The typing rule for probing a field is

Γ ` F : field#k(d)[σ] Γ ` p : tensor[d]

Γ ` F@p : tensor[σ]

September 6, 2010 Diderot A parallel domain-specific language for image analysis 15

Programming model

Diderot program structure

A Diderot program has three parts:

1. Global definitions, including inputs.

2. Actor definitions, which are the computational agents.

3. Initialization, which defines an initial collection of actors.

September 6, 2010 Diderot A parallel domain-specific language for image analysis 16

Programming model

Diderot program structure

A Diderot program has three parts:

1. Global definitions, including inputs.

2. Actor definitions, which are the computational agents.

3. Initialization, which defines an initial collection of actors.

September 6, 2010 Diderot A parallel domain-specific language for image analysis 16

Programming model

Diderot program structure

A Diderot program has three parts:

1. Global definitions, including inputs.

2. Actor definitions, which are the computational agents.

3. Initialization, which defines an initial collection of actors.

September 6, 2010 Diderot A parallel domain-specific language for image analysis 16

Programming model

Diderot program structure

A Diderot program has three parts:

1. Global definitions, including inputs.

2. Actor definitions, which are the computational agents.

3. Initialization, which defines an initial collection of actors.

September 6, 2010 Diderot A parallel domain-specific language for image analysis 16

Programming model

Actors

I Each actor has a state, which includes its position and an update
method.

I Some state variables are annotated as outputs.
I The execution model is bulk synchronous: at each iteration, every actor’s

state is updated independently.
I The system iterates until a termination condition is met.

September 6, 2010 Diderot A parallel domain-specific language for image analysis 17

Programming model

Actors

I Each actor has a state, which includes its position and an update
method.

I Some state variables are annotated as outputs.
I The execution model is bulk synchronous: at each iteration, every actor’s

state is updated independently.
I The system iterates until a termination condition is met.

September 6, 2010 Diderot A parallel domain-specific language for image analysis 17

Programming model

Actors

I Each actor has a state, which includes its position and an update
method.

I Some state variables are annotated as outputs.
I The execution model is bulk synchronous: at each iteration, every actor’s

state is updated independently.
I The system iterates until a termination condition is met.

September 6, 2010 Diderot A parallel domain-specific language for image analysis 17

Programming model

Actors

I Each actor has a state, which includes its position and an update
method.

I Some state variables are annotated as outputs.
I The execution model is bulk synchronous: at each iteration, every actor’s

state is updated independently.
I The system iterates until a termination condition is met.

September 6, 2010 Diderot A parallel domain-specific language for image analysis 17

Programming model

Example: Maximum intensity projection

MIP is a volume rendering technique that
computes the maximum intensity value along
rays that are cast into the field.

September 6, 2010 Diderot A parallel domain-specific language for image analysis 18

Programming model

Example: Maximum intensity projection (continued ...)

input string dataFile; // name of dataset
input real stepSz; // size of steps
input vec3 eye; // location of eye point
input vec3 orig; // location of pixel (0,0)
input vec3 cVec; // vector between pixels horizontally
input vec3 rVec; // vector between pixels vertically

image(3)[] img = load (dataFile);
field#1(3)[] F = img ~ bspln3;

September 6, 2010 Diderot A parallel domain-specific language for image analysis 19

Programming model

Maximum intensity projection (continued ...)

actor RayCast (int row, int col)
{

vec3 pos = orig + real(row)*rVec + real(col)*cVec;
vec3 dir = (pos - eye) / |pos - eye|;
real t = 0.0;
output real maxval = -∞;

update
{

pos = pos + stepSz*dir;
maxval = max (F@pos, maxval);
if (t > 20)

stabilize;
t = t + stepSz;

}
}

initially [RayCast(r, c) | r in 0..199, c in 0..199];

September 6, 2010 Diderot A parallel domain-specific language for image analysis 20

Technical issues

Probing tensor fields

A probe gets compiled down into code that maps the real-valued coordinates
to integers that index the image data. It then samples the image values in the
neighborhood of the integer coordinates to compute the result of the probe.

⊛h

Continuous fieldDiscrete image data

This process is similar to texture filtering in Graphics, but it has stronger
mathematical requirements.

September 6, 2010 Diderot A parallel domain-specific language for image analysis 21

Technical issues

Exploiting domain knowledge
There are many opportunities to exploit domain knowledge to gain better
performance.

One example is the code

posi+1 = posi + stepSz ∗ dir;
maxvali+1 = max(F@posi+1, maxvali);

To probe the field F, we need to map posi+1 into image space. Using domain
knowledge (linear algebra), we can apply strength reduction.

posimg
i+1 = M−1posi+1

= M−1(posi + stepSz ∗ dir)

= M−1posi + M−1(stepSz ∗ dir)

= posimg
i + delta

September 6, 2010 Diderot A parallel domain-specific language for image analysis 22

Technical issues

Exploiting domain knowledge
There are many opportunities to exploit domain knowledge to gain better
performance.

One example is the code

posi+1 = posi + stepSz ∗ dir;
maxvali+1 = max(F@posi+1, maxvali);

To probe the field F, we need to map posi+1 into image space. Using domain
knowledge (linear algebra), we can apply strength reduction.

posimg
i+1 = M−1posi+1

= M−1(posi + stepSz ∗ dir)

= M−1posi + M−1(stepSz ∗ dir)

= posimg
i + delta

September 6, 2010 Diderot A parallel domain-specific language for image analysis 22

Technical issues

Exploiting domain knowledge
There are many opportunities to exploit domain knowledge to gain better
performance.

One example is the code

posi+1 = posi + stepSz ∗ dir;
maxvali+1 = max(F@posi+1, maxvali);

To probe the field F, we need to map posi+1 into image space. Using domain
knowledge (linear algebra), we can apply strength reduction.

posimg
i+1 = M−1posi+1

= M−1(posi + stepSz ∗ dir)

= M−1posi + M−1(stepSz ∗ dir)

= posimg
i + delta

September 6, 2010 Diderot A parallel domain-specific language for image analysis 22

Technical issues

Staged computation

Using staged computation (e.g., partial evaluation) to specialize the code for
properties of the image-data.

a.diderot Parser +
typechecker

Expander

data.nrrd

AST

IL Optimizer IL

Code
generator

a.out

September 6, 2010 Diderot A parallel domain-specific language for image analysis 23

Technical issues

Other issues

I Type inference and dimension polymorphism.
I Compiler architecture and internal representations that support multiple

parallel targets.
I Compiler and runtime techniques to automatically handle very large

images.

September 6, 2010 Diderot A parallel domain-specific language for image analysis 24

Technical issues

Other issues

I Type inference and dimension polymorphism.
I Compiler architecture and internal representations that support multiple

parallel targets.
I Compiler and runtime techniques to automatically handle very large

images.

September 6, 2010 Diderot A parallel domain-specific language for image analysis 24

Technical issues

Other issues

I Type inference and dimension polymorphism.
I Compiler architecture and internal representations that support multiple

parallel targets.
I Compiler and runtime techniques to automatically handle very large

images.

September 6, 2010 Diderot A parallel domain-specific language for image analysis 24

Future research

Long-term goals

In the future, we would like to generalize this work in two directions:

1. Extend Diderot to other classes of algorithms (e.g., object recognition).

2. Generalize approach to other domains.

September 6, 2010 Diderot A parallel domain-specific language for image analysis 25

Conclusion

Status

I First version of language design is done
I Parser and typechecker have been implemented
I Working on naı̈ve code generator with limited optimization that targets

OpenCL.

September 6, 2010 Diderot A parallel domain-specific language for image analysis 26

Conclusion

Status

I First version of language design is done
I Parser and typechecker have been implemented
I Working on naı̈ve code generator with limited optimization that targets

OpenCL.

September 6, 2010 Diderot A parallel domain-specific language for image analysis 26

Conclusion

Status

I First version of language design is done
I Parser and typechecker have been implemented
I Working on naı̈ve code generator with limited optimization that targets

OpenCL.

September 6, 2010 Diderot A parallel domain-specific language for image analysis 26

Conclusion

Portable parallel programming

Image analysis

Video encoding

Ray tracer

Computer games

Web server

Supercomputers

Clusters

SMP/Multicore

GPU

Applications Platforms

Program

Program

The Ideal: write once, run everywhere, for any application

September 6, 2010 Diderot A parallel domain-specific language for image analysis 27

Conclusion

Portable parallel programming

Image analysis

Video encoding

Ray tracer

Computer games

Web server

Supercomputers

Clusters

SMP/Multicore

GPU

Applications Platforms

Program

Program

Program

Program

The Reality: write once per platform per application

September 6, 2010 Diderot A parallel domain-specific language for image analysis 27

Conclusion

Portable parallel programming

Image analysis

Video encoding

Ray tracer

Computer games

Web server

Supercomputers

Clusters

SMP/Multicore

GPU

Applications Platforms

Program

Program

Manticore: restrict platforms

September 6, 2010 Diderot A parallel domain-specific language for image analysis 27

Conclusion

Portable parallel programming

Image analysis

Video encoding

Ray tracer

Computer games

Web server

Supercomputers

Clusters

SMP/Multicore

GPU

Applications Platforms

Program

Diderot: restrict applications

September 6, 2010 Diderot A parallel domain-specific language for image analysis 27

Conclusion

Questions?

September 6, 2010 Diderot A parallel domain-specific language for image analysis 28

