
Diderot:
A Parallel DSL for Image Analysis

and Visualization

Charisee Chiw
Gordon Kindlmann

John Reppy

Lamont Samuels
Nick Seltzer

University of Chicago

June 11, 2012

Introduction

Diderot

The Diderot project is a collaborative effort to use ideas from PL to improve
the state-of-the-art in scientific image analysis and visualization.

We have two main goals for Diderot:
I Improve programmability by supporting a high-level mathematical

programming notation.
I Improve performance by supporting efficient execution; especially on

parallel platforms.

June 11, 2012 PLDI’12 — Diderot 2

Introduction

Roadmap

I Image analysis
I Parallel DSLs
I Diderot design and examples
I Implementation issues
I Performance
I Conclusion

June 11, 2012 PLDI’12 — Diderot 3

Image analysis

Why image analysis is important

Physical object Image data Computational
representation

Imaging Visualization

Analysis

I Scientists need software tools to extract structure from many kinds of
image data.

I Creating new analysis/visualization programs is part of the experimental
process.

I The challenge of getting knowledge from image data is getting harder.

June 11, 2012 PLDI’12 — Diderot 4

Image analysis

Image analysis and visualization
I We are interested in a class of algorithms that compute geometric

properties of objects from imaging data.
I These algorithms compute over a continuous tensor field F (and its

derivatives), which are reconstructed from discrete data using a separable
convolution kernel h:

F = V ~ h

Continuous fieldDiscrete image data

⊛h FV

June 11, 2012 PLDI’12 — Diderot 5

Image analysis

Image analysis and visualization

Example applications include
I Direct volume rendering (requires

reconstruction, derivatives).
I Fiber tractography (requires tensor

fields).
I Particle systems (requires dynamic

numbers of computational elements).

June 11, 2012 PLDI’12 — Diderot 6

Image analysis

Image analysis and visualization

Example applications include
I Direct volume rendering (requires

reconstruction, derivatives).
I Fiber tractography (requires tensor

fields).
I Particle systems (requires dynamic

numbers of computational elements).

June 11, 2012 PLDI’12 — Diderot 6

Image analysis

Image analysis and visualization

Example applications include
I Direct volume rendering (requires

reconstruction, derivatives).
I Fiber tractography (requires tensor

fields).
I Particle systems (requires dynamic

numbers of computational elements).

June 11, 2012 PLDI’12 — Diderot 6

Image analysis

Image analysis and visualization

Example applications include
I Direct volume rendering (requires

reconstruction, derivatives).
I Fiber tractography (requires tensor

fields).
I Particle systems (requires dynamic

numbers of computational elements).

June 11, 2012 PLDI’12 — Diderot 6

Parallel DSLs

Parallel DSLs

Domain-specific languages provide a number of advantages:
I High-level notation supports rapid prototyping and pedagogical

presentation.
I Opportunities for domain-specific optimizations.

Parallel DSLs provide additional advantages
I High-level, abstract, parallelism models.
I Portable parallelism.

Parallel DSLs meet the Diderot design goals of improving programmability
and performance.

June 11, 2012 PLDI’12 — Diderot 7

Parallel DSLs

Related work

Other examples of parallel DSLs:
I Liszt: embedded DSL for writing mesh-based PDE solvers.
I Shadie: DSL for volume rendering applications.
I Spiral: program generator for DSP code.

June 11, 2012 PLDI’12 — Diderot 8

Diderot

Programmability: from whiteboard to code

vec3 grad = -rF(pos);
vec3 norm = normalize(grad);
tensor[3,3] H = r � rF(pos);
tensor[3,3] P = identity[3] - norm�norm;
tensor[3,3] G = -(P•H•P)/|grad|;
real disc = sqrt(2.0*|G|ˆ2 - trace(G)ˆ2);
real k1 = (trace(G) + disc)/2.0;
real k2 = (trace(G) - disc)/2.0;

June 11, 2012 PLDI’12 — Diderot 9

Diderot

Diderot program structure

Square roots of integers using Heron’s method.

// global definitions
input int N = 1000;
input real eps = 0.000001;

// strand definition
strand SqRoot (real val)
{

output real root = val;

update {
root = (root + val/root) / 2.0;
if (|rootˆ2 - val|/val < eps)

stabilize;
}

}

// initialization
initially [SqRoot(real(i)) | i in 1..N]

June 11, 2012 PLDI’12 — Diderot 10

Diderot

Diderot program structure

Square roots of integers using Heron’s method.

Globals are immutable, and are
used for program inputs and other
shared globals.

// global definitions
input int N = 1000;
input real eps = 0.000001;

// strand definition
strand SqRoot (real val)
{

output real root = val;

update {
root = (root + val/root) / 2.0;
if (|rootˆ2 - val|/val < eps)

stabilize;
}

}

// initialization
initially [SqRoot(real(i)) | i in 1..N]

June 11, 2012 PLDI’12 — Diderot 10

Diderot

Diderot program structure

Square roots of integers using Heron’s method.

Strands are the
elements of a bulk
synchronous
computation.

// global definitions
input int N = 1000;
input real eps = 0.000001;

// strand definition
strand SqRoot (real val)
{

output real root = val;

update {
root = (root + val/root) / 2.0;
if (|rootˆ2 - val|/val < eps)

stabilize;
}

}

// initialization
initially [SqRoot(real(i)) | i in 1..N]

June 11, 2012 PLDI’12 — Diderot 10

Diderot

Diderot program structure

Square roots of integers using Heron’s method.

Strands have parameters that are
used to initialize them.

Strands have state, which
includes outputs.

// global definitions
input int N = 1000;
input real eps = 0.000001;

// strand definition
strand SqRoot (real val)
{

output real root = val;

update {
root = (root + val/root) / 2.0;
if (|rootˆ2 - val|/val < eps)

stabilize;
}

}

// initialization
initially [SqRoot(real(i)) | i in 1..N]

June 11, 2012 PLDI’12 — Diderot 10

Diderot

Diderot program structure

Square roots of integers using Heron’s method.

Strands have an update method
that is invoked each super step.

// global definitions
input int N = 1000;
input real eps = 0.000001;

// strand definition
strand SqRoot (real val)
{

output real root = val;

update {
root = (root + val/root) / 2.0;
if (|rootˆ2 - val|/val < eps)

stabilize;
}

}

// initialization
initially [SqRoot(real(i)) | i in 1..N]

June 11, 2012 PLDI’12 — Diderot 10

Diderot

Diderot program structure

Square roots of integers using Heron’s method.

Strands have an update method
that is invoked each super step.

Strands can stabilize or die
during the computation.

// global definitions
input int N = 1000;
input real eps = 0.000001;

// strand definition
strand SqRoot (real val)
{

output real root = val;

update {
root = (root + val/root) / 2.0;
if (|rootˆ2 - val|/val < eps)

stabilize;
}

}

// initialization
initially [SqRoot(real(i)) | i in 1..N]

June 11, 2012 PLDI’12 — Diderot 10

Diderot

Diderot program structure

Square roots of integers using Heron’s method.

The initial collection of strands is
created using comprehension notation.

// global definitions
input int N = 1000;
input real eps = 0.000001;

// strand definition
strand SqRoot (real val)
{

output real root = val;

update {
root = (root + val/root) / 2.0;
if (|rootˆ2 - val|/val < eps)

stabilize;
}

}

// initialization
initially [SqRoot(real(i)) | i in 1..N]

June 11, 2012 PLDI’12 — Diderot 10

Diderot

Diderot design summary

The Diderot language design has two major aspects:
I A high-level mathematical programming model that uses the concepts

and direct-style notation of tensor calculus to work with image data.
These include tensor operations (•, ⇥) and higher-order field operations
(r), etc.

I A shared-nothing bulk-synchronous parallel execution model that
abstracts away from details of communication, synchronization, and
resource management.

June 11, 2012 PLDI’12 — Diderot 11

Diderot

Example — Curvature
field#2(3)[] F = bspln3 ~ load("quad-patches.nrrd");
field#0(2)[3] RGB = tent ~ load("2d-bow.nrrd");
· · ·
strand RayCast (int ui, int vi) {

· · ·
update {

· · ·
vec3 grad = -rF(pos);
vec3 norm = normalize(grad);
tensor[3,3] H = r⌦rF(pos);
tensor[3,3] P = identity[3] - norm⌦norm;
tensor[3,3] G = -(P•H•P)/|grad|;
real disc = sqrt(2.0*|G|ˆ2 - trace(G)ˆ2);
real k1 = (trace(G) + disc)/2.0;
real k2 = (trace(G) - disc)/2.0;
vec3 matRGB = // material RGBA

RGB([max(-1.0, min(1.0, 6.0*k1)),
max(-1.0, min(1.0, 6.0*k2))]);

· · ·
}

· · ·
}

k2

k1

(1,1)

(-1,-1)

June 11, 2012 PLDI’12 — Diderot 12

Diderot

Example — 2D Isosurface

int stepsMax = 10;
· · ·
strand sample (int ui, int vi) {
output vec2 pos = · · ·;

// set isovalue to closest of 50, 30, or 10
real isoval = 50.0 if F(pos) >= 40.0

else 30.0 if F(pos) >= 20.0
else 10.0;

int steps = 0;
update {

if (inside(pos, F) && steps <= stepsMax) {
// delta = Newton-Raphson step

vec2 delta = normalize(rF(pos)) * (F(pos) - isoval)/|rF(pos)|;
if (|delta| < epsilon)
stabilize;

pos = pos - delta;
steps = steps + 1;

}
else die;

}
}

June 11, 2012 PLDI’12 — Diderot 13

Implementation issues

Diderot compiler and runtime

I Compiler is about 21,000 lines of SML (2,500 in front-end).
I Multiple backends: vectorized C and OpenCL (CUDA under

construction).
I Multiple runtimes: Sequential C, Parallel C, OpenCL.
I Designed to generate libraries, but also supports standalone executables.

June 11, 2012 PLDI’12 — Diderot 14

Implementation issues

Probing tensor fields
A probe gets compiled down into code that maps the world-space coordinates
to image space and then convolves the image values in the neighborhood of
the position.

Continuous fieldDiscrete image data

FV ⊛h
x

M�1
n

In 2D, the reconstruction is (note that h is separable)

F(x) =
sX

i=1�s

sX

j=1�s

V[n + hi, ji]h(f
x

� i)h(f
y

� j)

where s is the support of h, n = bM

�1
xc and f = M

�1
x � n.

June 11, 2012 PLDI’12 — Diderot 15

Implementation issues

Probing tensor fields (continued ...)

In general, compiling the probe operations is more challenging.

For example, we might have

field#2(2)[] F = h ~ V;

· · · r(s * F)(x) · · ·
The first step is to normalize the field expressions.

r(s ⇤ (V ~ h))(x)) (s ⇤ (r(V ~ h)))(x)

) s ⇤ ((r(V ~ h))(x))

) s ⇤ (V ~ (rh))(x)

June 11, 2012 PLDI’12 — Diderot 16

Implementation issues

Probing tensor fields (continued ...)

Each component in the partial-derivative tensor corresponds to a component
in the result of the probe.

r(s ⇤ F)(x) = s ⇤ (V ~ (rh))(x)

= s ⇤ (V ~
"

@
@x

@
@y

#
h)(x)

= s ⇤
" P

s

i=1�s

P
s

j=1�s

V[n + hi, ji] h

0 (f
x

� i) h(f
y

� j)
P

s

i=1�s

P
s

j=1�s

V[n + hi, ji] h(f
x

� i) h

0 (f
y

� j)

#

A later stage of the compiler expands out the evaluations of h and h

0.

Probing code has high arithmetic intensity and is trivial to vectorize.

June 11, 2012 PLDI’12 — Diderot 17

Performance

Experimental framework
I SMP machine: 8-core MacPro with 2.93 GHz Xeon X5570 processors

(SSE-4)
I Four typical benchmark programs

I
vr-lite — simple volume-renderer with Phong shading running on CT
scan of hand

I
illust-vr — fancy volume-renderer with cartoon shading running on CT
scan of hand

I
lic2d — line integral convolution in 2D running on turbulance data

I
ridge3d — particle-based ridge detection running on lung data

June 11, 2012 PLDI’12 — Diderot 18

Performance

Experimental framework
I SMP machine: 8-core MacPro with 2.93 GHz Xeon X5570 processors

(SSE-4)
I Four typical benchmark programs

I
vr-lite — simple volume-renderer with Phong shading running on CT
scan of hand

I
illust-vr — fancy volume-renderer with cartoon shading running on CT
scan of hand

I
lic2d — line integral convolution in 2D running on turbulance data

I
ridge3d — particle-based ridge detection running on lung data

June 11, 2012 PLDI’12 — Diderot 18

Performance

Experimental framework
I SMP machine: 8-core MacPro with 2.93 GHz Xeon X5570 processors

(SSE-4)
I Four typical benchmark programs

I
vr-lite — simple volume-renderer with Phong shading running on CT
scan of hand

I
illust-vr — fancy volume-renderer with cartoon shading running on CT
scan of hand

I
lic2d — line integral convolution in 2D running on turbulance data

I
ridge3d — particle-based ridge detection running on lung data

June 11, 2012 PLDI’12 — Diderot 18

Performance

Experimental framework
I SMP machine: 8-core MacPro with 2.93 GHz Xeon X5570 processors

(SSE-4)
I Four typical benchmark programs

I
vr-lite — simple volume-renderer with Phong shading running on CT
scan of hand

I
illust-vr — fancy volume-renderer with cartoon shading running on CT
scan of hand

I
lic2d — line integral convolution in 2D running on turbulance data

I
ridge3d — particle-based ridge detection running on lung data

June 11, 2012 PLDI’12 — Diderot 18

Performance

SMP scaling
Parallel performance scaling with respect to sequential Diderot.

Number of threads
1 2 3 4 5 6 7 8

S
p
ee

d
u
p

0

1

2

3

4

5

6

7

8
perfect

vr−lite

illust−vr

lic2d

ridge3d

June 11, 2012 PLDI’12 — Diderot 19

Performance

Comparison across platforms
Compare performance on three platforms: sequential (MacPro), 8-way
parallel (MacPro), and NVIDIA Tesla C2070.

Baseline is Teem/C implementation on MacPro.

vr−lite illust−vr lic2d ridge3d

S
p
ee

d
u
p
 v

s.
 T

ee
m

/C

0

5

10

15

20

25

30

Teem/C Sequential SMP−8 Tesla

June 11, 2012 PLDI’12 — Diderot 20

Conclusion

Conclusion

Diderot provides:
I High-level programming notation.
I Domain-specific optimizations.
I Portable parallel performance.

These advantages apply to Parallel DSLs in general!

Thanks to NVIDIA and AMD for their support.

June 11, 2012 PLDI’12 — Diderot 21

Conclusion

Questions?

http://diderot-language.cs.uchicago.edu

June 11, 2012 PLDI’12 — Diderot 22

http://diderot-language.cs.uchicago.edu

	Introduction
	Image analysis
	Parallel DSLs
	Diderot
	Implementation issues
	Performance
	Conclusion

