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Introduction

Diderot

The Diderot project is a collaborative effort to use ideas from PL to improve
the state-of-the-art in scientific image analysis and visualization.

We have two main goals for Diderot:
I Improve programmability by supporting a high-level mathematical

programming notation.
I Improve performance by supporting efficient execution; especially on

parallel platforms.
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Image analysis

Why image analysis is important

Physical object Image data Computational
representation

Imaging Visualization

Analysis

I Scientists need software tools to extract structure from many kinds of
image data.

I Creating new analysis/visualization programs is part of the experimental
process.

I The challenge of getting knowledge from image data is getting harder.
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Image analysis

Image analysis and visualization
I We are interested in a class of algorithms that compute geometric

properties of objects from imaging data.
I These algorithms compute over a continuous tensor field F (and its

derivatives), which are reconstructed from discrete data using a separable
convolution kernel h:

F = V ~ h

Continuous fieldDiscrete image data

⊛h FV
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Image analysis

Image analysis and visualization

Example applications include
I Direct volume rendering (requires

reconstruction, derivatives).
I Fiber tractography (requires tensor

fields).
I Particle systems (requires dynamic

numbers of computational elements).
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Parallel DSLs

Parallel DSLs

Domain-specific languages provide a number of advantages:
I High-level notation supports rapid prototyping and pedagogical

presentation.
I Opportunities for domain-specific optimizations.

Parallel DSLs provide additional advantages
I High-level, abstract, parallelism models.
I Portable parallelism.

Parallel DSLs meet the Diderot design goals of improving programmability
and performance.
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Parallel DSLs

Related work

Other examples of parallel DSLs:
I Liszt: embedded DSL for writing mesh-based PDE solvers.
I Shadie: DSL for volume rendering applications.
I Spiral: program generator for DSP code.
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Diderot

Programmability: from whiteboard to code

vec3 grad = -rF(pos);
vec3 norm = normalize(grad);
tensor[3,3] H = r � rF(pos);
tensor[3,3] P = identity[3] - norm�norm;
tensor[3,3] G = -(P•H•P)/|grad|;
real disc = sqrt(2.0*|G|ˆ2 - trace(G)ˆ2);
real k1 = (trace(G) + disc)/2.0;
real k2 = (trace(G) - disc)/2.0;
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Diderot

Diderot program structure

Square roots of integers using Heron’s method.

// global definitions
input int N = 1000;
input real eps = 0.000001;

// strand definition
strand SqRoot (real val)
{

output real root = val;

update {
root = (root + val/root) / 2.0;
if (|rootˆ2 - val|/val < eps)

stabilize;
}

}

// initialization
initially [ SqRoot(real(i)) | i in 1..N ]
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Diderot

Diderot program structure
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Globals are immutable, and are 
used for program inputs and other 
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Diderot

Diderot program structure

Square roots of integers using Heron’s method.

Strands are the 
elements of a bulk 
synchronous 
computation.
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Diderot

Diderot program structure

Square roots of integers using Heron’s method.

Strands have parameters that are 
used to initialize them.

Strands have state, which 
includes outputs.
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Diderot

Diderot program structure

Square roots of integers using Heron’s method.

Strands have an update method 
that is invoked each super step.

// global definitions
input int N = 1000;
input real eps = 0.000001;

// strand definition
strand SqRoot (real val)
{

output real root = val;

update {
root = (root + val/root) / 2.0;
if (|rootˆ2 - val|/val < eps)

stabilize;
}

}

// initialization
initially [ SqRoot(real(i)) | i in 1..N ]

June 11, 2012 PLDI’12 — Diderot 10



Diderot

Diderot program structure

Square roots of integers using Heron’s method.

Strands have an update method 
that is invoked each super step.
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Diderot

Diderot program structure

Square roots of integers using Heron’s method.

The initial collection of strands is 
created using comprehension notation.

// global definitions
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// strand definition
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update {
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Diderot

Diderot design summary

The Diderot language design has two major aspects:
I A high-level mathematical programming model that uses the concepts

and direct-style notation of tensor calculus to work with image data.
These include tensor operations (•, ⇥) and higher-order field operations
(r), etc.

I A shared-nothing bulk-synchronous parallel execution model that
abstracts away from details of communication, synchronization, and
resource management.
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Diderot

Example — Curvature
field#2(3)[] F = bspln3 ~ load("quad-patches.nrrd");
field#0(2)[3] RGB = tent ~ load("2d-bow.nrrd");
· · ·
strand RayCast (int ui, int vi) {

· · ·
update {

· · ·
vec3 grad = -rF(pos);
vec3 norm = normalize(grad);
tensor[3,3] H = r⌦rF(pos);
tensor[3,3] P = identity[3] - norm⌦norm;
tensor[3,3] G = -(P•H•P)/|grad|;
real disc = sqrt(2.0*|G|ˆ2 - trace(G)ˆ2);
real k1 = (trace(G) + disc)/2.0;
real k2 = (trace(G) - disc)/2.0;
vec3 matRGB = // material RGBA

RGB([max(-1.0, min(1.0, 6.0*k1)),
max(-1.0, min(1.0, 6.0*k2))]);

· · ·
}

· · ·
}

k2

k1

(1,1)

(-1,-1)
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Diderot

Example — 2D Isosurface

int stepsMax = 10;
· · ·
strand sample (int ui, int vi) {
output vec2 pos = · · ·;

// set isovalue to closest of 50, 30, or 10
real isoval = 50.0 if F(pos) >= 40.0

else 30.0 if F(pos) >= 20.0
else 10.0;

int steps = 0;
update {

if (inside(pos, F) && steps <= stepsMax) {
// delta = Newton-Raphson step

vec2 delta = normalize(rF(pos)) * (F(pos) - isoval)/|rF(pos)|;
if (|delta| < epsilon)
stabilize;

pos = pos - delta;
steps = steps + 1;

}
else die;

}
}

June 11, 2012 PLDI’12 — Diderot 13



Implementation issues

Diderot compiler and runtime

I Compiler is about 21,000 lines of SML (2,500 in front-end).
I Multiple backends: vectorized C and OpenCL (CUDA under

construction).
I Multiple runtimes: Sequential C, Parallel C, OpenCL.
I Designed to generate libraries, but also supports standalone executables.
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Implementation issues

Probing tensor fields
A probe gets compiled down into code that maps the world-space coordinates
to image space and then convolves the image values in the neighborhood of
the position.

Continuous fieldDiscrete image data

FV ⊛h
x

M�1
n

In 2D, the reconstruction is (note that h is separable)

F(x) =
sX

i=1�s

sX

j=1�s

V[n + hi, ji]h(f
x

� i)h(f
y

� j)

where s is the support of h, n = bM

�1
xc and f = M

�1
x � n.
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Implementation issues

Probing tensor fields (continued ...)

In general, compiling the probe operations is more challenging.

For example, we might have

field#2(2)[] F = h ~ V;

· · · r(s * F)(x) · · ·
The first step is to normalize the field expressions.

r(s ⇤ (V ~ h))(x) ) (s ⇤ (r(V ~ h)))(x)

) s ⇤ ((r(V ~ h))(x))

) s ⇤ (V ~ (rh))(x)
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Implementation issues

Probing tensor fields (continued ...)

Each component in the partial-derivative tensor corresponds to a component
in the result of the probe.

r(s ⇤ F)(x) = s ⇤ (V ~ (rh))(x)

= s ⇤ (V ~
"

@
@x

@
@y

#
h)(x)

= s ⇤
" P

s

i=1�s

P
s

j=1�s

V[n + hi, ji] h

0 (f
x

� i) h(f
y

� j)
P

s

i=1�s

P
s

j=1�s

V[n + hi, ji] h(f
x

� i) h

0 (f
y

� j)

#

A later stage of the compiler expands out the evaluations of h and h

0.

Probing code has high arithmetic intensity and is trivial to vectorize.
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Performance

Experimental framework
I SMP machine: 8-core MacPro with 2.93 GHz Xeon X5570 processors

(SSE-4)
I Four typical benchmark programs

I
vr-lite — simple volume-renderer with Phong shading running on CT
scan of hand

I
illust-vr — fancy volume-renderer with cartoon shading running on CT
scan of hand

I
lic2d — line integral convolution in 2D running on turbulance data

I
ridge3d — particle-based ridge detection running on lung data
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Performance

SMP scaling
Parallel performance scaling with respect to sequential Diderot.

Number of threads
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Performance

Comparison across platforms
Compare performance on three platforms: sequential (MacPro), 8-way
parallel (MacPro), and NVIDIA Tesla C2070.

Baseline is Teem/C implementation on MacPro.
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Conclusion

Conclusion

Diderot provides:
I High-level programming notation.
I Domain-specific optimizations.
I Portable parallel performance.

These advantages apply to Parallel DSLs in general!

Thanks to NVIDIA and AMD for their support.
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Conclusion

Questions?

http://diderot-language.cs.uchicago.edu
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