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Abstract

Diderot is a parallel domain-specific language designed for biomedical image-analysis and vi-

sualization algorithms that provides a high-level mathematical programming model. Diderot allows

domain experts to implement familiar image analysis and visualization algorithms directly in terms

of tensors, tensor fields, and tensor operations, using the same mathematical notation that would be

used in vector and tensor calculus. These operations are executed as parallel independent computa-

tions. We model these independent computations as autonomous lightweight threads called strands.

The current design of Diderot limits strand creation to initialization time and does not provide any

mechanisms for communicating between strands. For algorithms, such as particle systems, where

strands are used to explore the image space, it is useful to be able to create new strands dynamically

and share data between strands.

We present a strand communication system with two mechanisms: a spatial mechanism that

retrieves nearby strands based on their geometric position in space, and a global mechanism for

global computations (i.e., reductions) over sets of strands. We also provide a new mechanism for

dynamically allocating new strands. We show through experiments that our strand communication

system can provide good performance for our sequential runtime.
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Chapter 1

Introduction

Biomedical researchers use imagining technologies, such as computed tomography (CT) and mag-

netic resonance (MRI) to study the structure and function of a wide variety of biological and phys-

ical objects. The increasing sophistication of these new technologies provide researchers with the

ability to quickly and efficiently analyze and visualize their complex data. But researchers using

these technologies may not have the programming background to create efficient parallel programs

to handle their data. We have created a language called Diderot [3] that provides tools and a system

to simplify image data processing.

Diderot is a domain specific language (DSL) that allows biomedical researchers to efficiently

and effectively implement image analysis and visualization algorithms. Diderot supports a high-

level mathematical programming model that is based on continuous tensor fields. We use tensors to

refer to scalars, vectors, and matrices, which contain the types of values produced by the imaging

technologies mentioned above, and values produced by taking spatial derivatives of images. Al-

gorithms written in Diderot can be directly expressed in terms of tensors, tensor fields, and tensor

operations, using the same mathematical notation that would be used in vector and tensor calculus.

Diderot is targeted towards image analysis and visualization algorithms that use real image data,

where the data is better processed as parallel computations. These computations are executed by

a collection of autonomous lightweight threads called strands. Currently, Diderot only supports

applications that allow strands to act independently of each other, such as direct volume rendering

[5] or fiber tractography [7]. Many of these applications only require common tensor operations

or types (i.e., reconstruction and derivatives for direct volume rendering or tensor fields for fiber

tractorgraphy), which Diderot already provides. However, Diderot is missing features needed for
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other algorithms of interest, such as particle systems. These features include support for: inter-

strand communication, global computations over the strands, and dynamic allocation of strands. By

providing a communication system with these new mechanisms, we can effectively increases the

class of applications that Diderot can support.

One example is an algorithm that distributes particles on implicit surfaces. Meyer uses a class of

energy functions to help distribute particles on implicit surfaces within a locally adaptive framework

[12]. The idea of the algorithm is to minimize the potential energy associated with particle inter-

actions, which will distribute the particles on the implicit surface. Each particle creates a potential

field, which is a function of the distances between the particle and its neighbors that lie within the

potential field. The energy at each particle is defined to be the sum of the potentials of its interacting

neighbors. The global energy of the system is then the sum of all the individual particle energies.

The derivative of the global energy function produces a repulsive force that defines the necessary

velocity direction. By moving each particle in the direction of the energy gradient, a global mini-

mum is found when the particles are evenly spaced across the surface. The various steps within this

algorithm require communication in two distinct ways: interactions between neighboring particles

(i.e., computing the energy at a particle is the sum of its neighbors’ potentials) and interactions

between all particles (i.e., computing the global energy of the entire system). These distinctions

motivate us to design a communication system that provides mechanisms for both local and global

interactions. Strands need a way for only interacting with a subset of strands or with all the strands

in the system.

Another design goal for strand communication is to provide different ways of collecting nearby

neighbors. For example, Kindlmann and Westin [11] use a particle system to locate tensors at

discrete points according to tensor field properties and visualizes these points using tensor glyphs.

Particles are distributed throughout the field by a dense packing method. The packing is calculated

using the particle system where particles interactions are determined via a potential energy function

derived from the tensor field. Since the potential energy of a particle is affected by its surrounding

particles, neighboring particles can be chosen based on the current distribution of the particles.

Figure 1-1 illustrates an example of using glyph packing on a synthetic dataset. The neighbors are

retrieved using an ellipsoidal encapsulation; however, we use this figure to show two possible ways

in which neighbors are collected: hexagonal encapsulation and rectangular encapsulation, even

though their distribution is a by-product of the underlying data. Both mechanisms only retrieve

the the particles defined within those geometric encapsulations and use queries that represent the
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current distribution in their area. In this example, using specialized queries can lead to a better

representation on the underlying continuous features of the field. We need to provide various means

of strand interaction, where researchers have the option of choosing the best query that suits their

algorithm or their underlying data.

Figure 1-1: Glyph packing on synthetic data [11]. The red grids are specialized queries for retrieving
neighboring glyphs. The orange glyphs represent the neighbors of the blue glyph performing the
query.

We present a communication system implemented for Diderot that provides two distinct mech-

anisms of communication. One mechanism is based on interactions with nearby strands and the

other mechanism is based on global computations over the strands in the system. In the coming

chapters, we describe the additions to the language that allow for strand communication and how

they are developed within our compiler. In the next chapter, we provide an overview of the Diderot

language and system. We then present the language design of strand communication in Chapter 3

and dynamic strand creation in Chapter 4. We then discuss in Chapter 5 the implementation aspects

of strand communication. Chapter 6 presents performance results, followed by a discussion of re-

lated work in Chapter 7. Future work is discussed in Chapter 8 and we then summarize our results

in Chapter 9.
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Chapter 2

Diderot Overview

As mentioned earlier, Diderot targets applications that consist of many independent subcomputa-

tions (i.e., strands). We use C-like syntax for our computational notation, but have added common

concepts and the direct-style notations from tensor calculus. In this chapter, we provide an overview

of Diderot’s: types, program structure, execution model, and semantics.

2.1 Types and Values

Diderot has six types of basic values: booleans, strings, integers, tensors, and fixed and dynamic

sequences (i.e., sequences that have no predefined size and can also vary in size) of values. The

type tensor[σ] is a tensor with shape σ ∈ {i | 1 < i}∗. The number of dimensions in σ (i.e.,

the length of σ) is the order of the tensor. For example, the types of a scalar and a 3D vector are

tensor[] and tensor[3], respectively. We consider these types to be a 0-order tensor and a

1-order tensor. We also define synonyms for common tensor types, such as real and vec3.

Diderot also provides three forms of abstract types: images, fields, and kernels. Images are

multidimensional arrays of tensor data. The type image(d)[σ] is the abstract type of image data,

where d ≥ 1 specifies the dimension of the data and σ specifies the shape. The discrete data within

the image is reconstructed using convolution kernels. The type kernel#k is the type of a kernel

that is of class Ck (i.e., k is the number of continuous derivatives it has). Diderot provides a number

of helpful built-in kernels, such as the C1 interpolating Catmull-Rom cubic spline ctmr, and the

C0 tent for linear interpolation. Lastly, field#k(d)[σ] is the type of continuous tensor fields,

where k is the number of continuous derivatives, d is the dimension of the field’s domain, and σ is

the shape of its range. A field is a function from d-dimensional space to tensors with the shape σ.
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2.2 Program Structure

A Diderot program is organized into three sections: global definitions, which include program

inputs; strand definitions, which define the computational core of the algorithm; and initialization,

which defines the initial set of strands. To illustrate this structure, we present a program that uses

Heron’s method for computing square roots (shown in Figure 2-1) as a running example.

1 int{} args = load("numbers.nrrd");
2 int nArgs = length(args);
3 input real eps = 0.00001;
4
5 strand SqRoot (real arg)
6 {
7 output real root = arg;
8
9 update {

10 root = (root + arg/root) / 2.0;
11 if (|rootˆ2 - arg| / arg < eps)
12 stabilize;
13 }
14 }
15
16 initially { SqRoot(args{i}) | i in 0 .. nArgs-1 };

Figure 2-1: Heron’s method code

2.2.1 Global Definitions

Lines 1–3 of Figure 2-1 define the global variables of our example. Global variables in Diderot

are immutable. Line 3 is marked as an input variable, which means it can be set outside the

program (input variables may also have a default value, as in the case of eps). The Diderot compiler

synthesizes glue code that allows input variables to be set on the command-line or by a library call.

Line 1 loads the dynamic sequence of integers from the file "numbers.nrrd" and binds the

dynamic sequence to the variable args. The load function may only be used in global part of

the program. Line 2 uses the length function to retrieve the number of elements in the sequence

args.

2.2.2 Strands

Similar to a kernel function in CUDA [14] or OpenCL [10], a strand in Diderot encapsulates the

computational core of the application. Each strand has parameter(s) (e.g., arg on Line 5), a state

(Line 7) and an update method (Lines 10–12). The strand state variables are initialized when the
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strand is created; some variables may be annotated as output variables (Line 7), which define

the part of the strand state that is reported in the program’s output. Heron’s method begins with

choosing an arbitrary initial value (the closer to the actual root of arg, the better). In this case, we

assign the initial value of root to be our real number arg. Unlike globals, strand state variables are

mutable. In addition, strand methods may define local variables (the scoping rules are essentially

the same as C’s).

The updatemethod of the SqRoot strand performs the approximation step of Heron’s method

(Line 10). The idea is that if root is an overestimation to the square root of arg then arg
root will be an

underestimate; therefore, the average of these two numbers provides a better approximation of the

square root. In Line 11, we check to see if we achieved our desired accuracy as defined by eps,

in which case we stabilize the strand (Line 12). A stabilized strand ceases to be updated. A strand

may also have a stabilize method that is invoked when the strand stabilizes to perform any final

computations.

2.2.3 Initialization

The last part of a Diderot program is the initialization section, which is where the programmer

specifies the initial set of strands in the computation. Diderot uses a comprehension syntax, similar

those of Haskell or Python, to define the initial set of strands. For example, we specify a collection of

integers, where each integer is retrieved from the dynamic sequence variable (args) in Line 16.When

the initial set of strands is specified as a collection, it implies that the program’s output will be a

one-dimension array of values; one for each stable strand. For example, each square root strand will

produce the approximate square root of an integer.

Diderot also allows one to specify an initial grid of strands by using “[ ]” as the brackets

around the comprehension (instead of “ { }’). In this case, The grid structure is then preserved in

the output.

2.3 Bulk Synchronous Model

Diderot uses a bulk-synchronous parallelism model [18, 19] as shown in Figure 2-2. In this model,

all active strands execute in parallel steps, which we call super steps. During a super step, each

strand’s update method is evaluated once. The idle periods represent the time from when the strand

finishes executing its update method to the end of the update phase. A stable strands remain idle
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for the entirety of its update phase. The program executes until all of the strands are either stable or

dead.

execution
step

strands

update

idle

strand state

die

stabilize

Figure 2-2: Illustrates two iterations of our current bulk synchronous model.

2.4 Semantics

Before discussing our semantics, we define the notation that we use throughout its description. If A

and B are two sets, we use the notation A fin−→ B to denote the set of finite maps from A to B and A

∪ B as there union. We write {a1 7→ b1, ..., an 7→ bn} for the finite map that maps a1 to b1, etc. We

write the notation (B of C) to mean we are selecting the value B from the tuple C. For a finite map,

f, we write dom(f) for its domain and rng(f) for its range. if f and g are finite maps, we write f±g

for the finite map

{x 7→ g(x) | x ∈ dom(g)} ∪ {x 7→ f(x) | x ∈ dom(f) \ dom(g)}

and we write f [x 7→ v] to represent a binding of a variable to a value that is defined as:
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f [x 7→ v](y) =


v if x = y

f(y) if x 6= y.

2.4.1 Syntax

We use the following classes of identifiers in the syntax of Diderot.

τ ∈ TYPES types

x ∈ VAR = {y,z,...} local, global, and state variables

f ∈ PRIMFUNS primitive operations and functions

c ∈ CONST constants (e.g.: booleans,integers,etc..)

v ∈ VALUE values

e ∈ EXPR expressions

D ∈ STATEMENTDECLARATION statement declarations

s ∈ STATEMENT statements

S ∈ STRANDDEFINITION strand definition

N ∈ STRANDNAME strand name

i ∈ INITIALLYDEFINITION initially definition

m ∈ STRANDMETH strand method

p ∈ PROGRAM Diderot program

The syntax of Diderot is given in Figure 2-3. A Diderot program consists of a sequence of

statement declarations, which represent the global variables, a strand definition, and an initially

block. A strand definition contains: an expression that can be used to initialize its state, a sequence

of statement declarations, which represent its state, and methods, such as the update method. A

strand method include statements, such as assignments and conditionals. Common tensor calculus

operations and functions are defined as expressions. The Diderot syntax uses unicode characters to

represent mathematical constants (π) and a rich set of operations on tensors, such as: dot product

(u•v), cross product (u×v), tensor product (u⊗v), and vector norm (|u|). Continuous tensor fields

are created using high-order operations, such as addition and subtraction and convolving image data

with kernels (img~bspln3). We also support differentiation of fields using the notation ∇ (for

scalar fields) and ∇⊗ (for higher-order tensor fields). Finally, the initially block is used to

allocate the initial collection of strands.
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p ::= D;S; i

D ::= τ x = e
| D1;D2

S ::= strand (τ x){D;m}

m ::= update(s)

i ::= initially{e1 | x in e2 .. e3}

τ ::= int | string | bool
| τ{n}
| τ{}
| tensor[σ]
| τ 7→ τ ′

| image(d)[σ] d ∈ {n | n > 1}
σ ∈ {d1 , ..., dn}

| kernel#k k ∈ {n | n ≥ 0}
| field#k(d)[σ]
| strand

c ::= 1, 2, 3, ...
| true, false
| ...

v ::= c
| vs

vs ::= [] | v :: vs

e ::= x
| v
| e1{e2}
| f(e1, ..., en)
| e1 if e2 else e3

s ::= {s}
| D
| if e1 then s1 else s2
| x = e
| s1; s2
| stabilize
| die

Figure 2-3: The Diderot syntax

2.4.2 Static Semantics

The Diderot typing judgments are written with respect to a static environment Γ, which consists of

a variable environment (ψ), and a strand variable environment ( γ), which contains the types of the

strand state variables. These environments are defined in Figure 2-4. The judgement forms and their

meanings are defined in Table 2.1.
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ψ ∈ VARENV = VAR
fin−→ TYPE variable typing environment

γ ∈ STRANDTYENV = VAR
fin−→ TYPE strand state typing environment

Γ ∈ ENV = VARENV× STRANDTYENV typing environment

Figure 2-4: Definitions of the typing enironments

Table 2.1: Judgement forms and their meanings

Judgement Form Meaning
Γ ` s : ok Statement s is well-formed w.r.t. Γ.
Γ ` e : τ Expression e has type τ .
Γ ` S : γ Strand definition S defines environment (γ of Γ).
Γ ` i : ok Initially definition i is well-formed w.r.t. Γ.
Γ ` D : Γ′ Declaration D defines environment Γ′.
Γ ` m : ok Method m is well-formed w.r.t. Γ.
Γ ` p : Γ′ Program p defines environment Γ′.

The rules for declarations, strand definitions and Diderot programs are shown in Figure 2-5.

The first two rules show how the variable typing environment is augmented when typing new dec-

larations. The next rules illustrate how the strand the strand typing environment is created from the

declarations defined in the strand definition. Lastly, the typing rule for a program produces the ini-

tial typing environment, where (ψ of Γ) is built from typing the global declarations, and (γ of Γ)

is created from typing the strand definition.

Γ ` e : τ Γ′ = 〈{x 7→ τ}, ∅〉
Γ ` τ x = e : Γ′

Γ ` D1 : Γ′ Γ + Γ′ ` D2 : Γ′′

Γ ` D1 ;D2 : Γ′±Γ′′

(ψ[x 7→ τ ] of Γ) ` D : Γ′ 〈(ψ[x 7→ τ ] of Γ)±(ψ of Γ′), (ψ of Γ′)〉 ` m : ok

Γ ` strand (τ x){D;m} : (ψ of Γ′)

〈∅, ∅〉 ` D : Γ′ Γ′ ` S : γ 〈(ψ of Γ′), γ〉 ` i : ok

D;S; i : 〈(ψ of Γ′), γ〉

Figure 2-5: Static semantics for a declaration, strand definition, and a program
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2.4.3 Dynamic Semantics

We augment the Diderot syntax to include the runtime form of a strand definition and its components

as shown in Figure 2-6.

T ∈ STRANDSTATE strand state

I ∈ STRANDIDENTIFIER strand identifier

k ∈ STRANDSTATUS strand status

σ ∈ VARSTATE = VAR→ VALUE local variable state

I ::= c

k ::= active | stable | dead

T ::= 〈I; k; σ〉

v ::= ... previously defined values
| T strand state

Figure 2-6: The runtime form of a strand definition

The form 〈I; k; σ〉 denotes a strand state. The I portion represents a strand identifier, which is

an unique value assigned to each strand. The k portion represents a strand status, which determines

if a strand is active, stable, or dead. The σ portion denotes a local variable state, which is a

function that binds state variables to values.

To define the evaluation relation, we need some additional definitions as show in Figure 2-7.

∆ = STRANDDEFINITION strand definition of the program

η ∈ STRANDIDENV = STRANDID
fin−→ STRANDSTATE strand identifier environment

Σ ∈ GLOBALSTATE = (STRANDDEFINITION × STRANDIDENV global state
×VARSTATE× STRANDTYENV)

Figure 2-7: Evaluation environments and functions

∆ stores the strand definition of a Diderot program. Currently, there can only be one strand def-

inition defined within a Diderot program. We use ∆ to produce a fresh copy of a strand definition

when a new strand is allocated. The strand identifier environment is a finite function from strand
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identifiers to strand states. The global state is a tuple that stores the strand definition, the strand

identifier environment, a local variable state, which binds global variables to values, and the strand

typing environment. This environment is needed during the initialization of a new strand. The vari-

ables stored in the strand’s local state are defined by the domain of the strand typing environment.

The dynamic semantics is split into two phases. The first phase produces the global state by

evaluating a program’s global variables, strand definitions, and initially block. The second phase

repeatedly evaluates the update function of a strand state, while its status remains active. Fig-

ure 2-8 specifies the semantics of evaluating an expression and statement within a strand method.

Expressions and statements are evaluated with the global state context and a local state context (σ),

which represents the method’s local variable bindings. The first rule states that an expression evalu-

ates to a value (v). The next rule shows how the evaluation of a statement leads to a new local state.

For example, if an assignment statement is executed then the variable is changed to a new value

within the local state; therefore, this will lead to a new local state with that variable updated.

(1) Σ, σ ` e ⇓ v

(2) Σ, σ ` s ⇓ σ′

Figure 2-8: Expression and statement evaluation rules
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Chapter 3

Strand Communication Design

We provide two mechanisms for strand communication. The first is spatial communication, which

allows strands to interact with each other based on their world coordinates. Each strand uses special

query functions to identify neighboring strands. The second involves communication between a

subset of the strand population. For example, if strands have a state variable called energy then they

may want to know the average energy of all active strands. We refer to this type of communication as

global communication. We provide common reduction operations, such as mean, sum, product, etc.,

to work across a set of strands. Therefore, strands can retrieve the average energy of all active strands

by using the mean reduction. The remainder of this chapter provides a more detailed description of

the semantics of these mechanisms and how they can be used within a Diderot program.

3.1 Spatial Communication

The idea behind spatial communication is shown in Figure 3-1. A Strand Q needs information about

its neighboring strands. One way to retrieve Strand Q’s neighbors is by encapsulating it within a

circle (the green circle) given a radius r. Any strand contained within this circle is returned to

Strand Q as a collection of strands (i.e., Strands A, B, and C). In Diderot, this process is done using

predefined query functions. The queries are based on the strand’s position in world space. Currently

we only support this spherical or circle (in the 2D case) type of query, but plan to support various

other type of queries, such as encapsulating the strand within a box rather than a sphere or circle.

Once the collection is returned by the query, Strand Q can then retrieve state information from the

collection of neighbors.
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Figure 3-1: An example of showing a circle query. Strand Q (red) produces an encapsulating circle
(green) with a predefined radius. Any strands within the encapsulating circle is returned to Strand
Q. In this case, the query would return Strands A, B, and C.

3.1.1 Query Functions

The static semantics of a query function is depicted in Figure 3-2. Query functions produce a

sequence of strand states. Using the strand state, a strand can then gain access to its neighbor’s state

variables. As mentioned earlier, queries are based on a strand’s position in world space; therefore,

the strand state needs to contain a state variable called pos. The position variable needs to be defined

as a real pos, vec2 pos, or vec3 pos.

q ∈ QUERYFUN = {sphere,...} query functions

e ::= ... previously defined expressions
| q(e)

Γ ` e : τ pos ∈ dom(γ of Γ) q : τ 7→ strand{}
Γ ` q(e) : strand{}

Figure 3-2: Typing rule for query functions

The dynamic semantics of a query function is described in Figure 3-3. The dynamic seman-

tics includes a special function called query, which takes in the global state, the querying strand’s

position, the type of query (e.g., a spherical query) and a value (i.e., the argument(s) of the query

function). The query function produces a dynamic sequence of strand states based on the position

of the querying strand and the type of query requested.
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Σ, σ ` e ⇓ v vs = query(Σ, σ(pos), q, v)

Σ, σ ` q(e) ⇓ vs

Figure 3-3: Dynamic semantics for query functions

3.1.2 Strand Iteration

Processing the queried sequence of strands is performed using a new Diderot mechanism called

the foreach statement. Figure 3-4 shows the typing rule for the foreach statement. The expression

e1 produces a sequence of type τ . The foreach iterates over the sequence and assigns its iterator

variable x to have type τ for the judgement of the statement s0.

s ::= ... previously defined statements
| foreach(x in e)s foreach statement

Γ ` e1 : τ{} (ψ of Γ)[x 7→ τ ] ` s0 ok

Γ ` foreach(x in e1) s0 ok

Figure 3-4: Typing rule for the foreach statement

Figure 3-5 shows the dynamic semantics of the foreach statement. The evaluation of the ex-

pression e1 will produce a value as shown in the first rule. The second rule binds the first value of

the sequence to the iterator variable x in the local state σ, which is used to evaluate the statement

block, s0. Any values updated after the processing of s0 are now defined within the new state, σ′.

We use this new state to evaluate the rest of the sequence vs, which produces the final updated state,

σ′′. The third rule illustrates the termination of the foreach. When the sequence is empty then we

continue executing the rest of the program.

Σ, σ ` e1 ⇓ vs Σ, σ ` foreach (x in vs) s0 ⇓ σ′

Σ, σ ` foreach(x in e1)s0 ⇓ σ′

Σ, σ[x 7→ v] ` s0 ⇓ σ′ Σ, σ′ ` foreach (x in vs) s0 ⇓ σ′′

Σ, σ ` foreach(x in v :: vs) s0 ⇓ σ′′

Σ, σ ` foreach(x in []) s0 ⇓ σ

Figure 3-5: Dynamic semantics for foreach statement
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3.1.3 Neighbor Count Example

An example of using spatial communication is shown in Figure 3-6. This example simply counts the

number of neighbors returned by the query function. The program loads positions from a file (Line

1) and assigns (Line 8) each particle (i.e., a strand) a position. It declares an accumulator variable

(Line 11) to keep track of the number of neighbors. The foreach statement (Line 12) declares

variable p of type name. The program uses a spherical query (Line 12) to retrieve its neighbors,

where each neighbor will be assigned to the foreach iterator variable, p. The accumulator variable

is incremented for each neighbor within the collection (Line 13). Finally, the neighbor count is

assigned to the strand’s output variable (Line 15).

1 real{} posns = load("positions.nrrd");
2 int numParticles = 64;
3 int dimSize = 2;
4 int strandSize = 2;
5 real queryRadius = 10;
6
7 strand Particle (real x,real y) {
8 vec2 pos = [x,y];
9 output int neighborCount = 0;

10 update {
11 int count = 0;
12 foreach(Particle p in sphere(query_radius)){
13 count = count + 1;
14 }
15 neighborCount = count;
16 stabilize;
17 }
18 }
19 initially {Particle(posns{i*dimSize},posns{i*dimSize+1}) | i in 0 .. numParticles-1 };

Figure 3-6: Diderot code that counts the number of nearby neighbors for a Particle.

3.1.4 Accessing Strand State Information

A variable assigned to a strand state can access its state variables. For example, the variable p in the

foreach statement in Figure 3-6 can be used to retrieve the values of the pos and neighborCount

state variables. The selection operator can be used to retrieve state variables of a strand state. The

typing judgement for the selection operator is depicted in Figure 3-7. The rule states that the type

of the expression e is a strand type. This is required since only variables of type strand can access

state variables. The rule shows that the type of the state variable (x) in γ is the resulting type of the

selection operator.
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e ::= ... previously defined expressions
| e.x selection operator

Γ ` e : strand (γ of Γ)(x) : τ x ∈ dom(γ of Γ)

Γ ` e.x : τ

Figure 3-7: Typing judgement of the selection operator

Figure 3-8 illustrates the dynamic semantics for accessing a state variable using the selection

operator. The evaluation of e is a strand state. The local variable state defined within the strand state

is used to find the value of state variable (x).

Σ, σ ` e ⇓ 〈I; k; σ; m〉 σ(x) = v

Σ, σ ` e .x ⇓ v

Figure 3-8: Dynamic semantics for the dot expression

3.1.5 Average Energy Example

Figure 3-9 is an example of how strands retrieve state information from neighboring strands. In par-

ticular, strands are accessing each neighbor’s energy state variable and then averaging the engeries.

We use the selection operator (Line 11) to retrieve each neighbor’s energy variable using the syntax

variable.state variable (e.g., p.energy).

1
2 strand Particle (real e, real x,real y) {
3 vec2 pos = [x,y];
4 real energy = e;
5 output real avgEnergy = 0.0;
6 update {
7 int count = 0;
8 real energyTotal = 0.0;
9 foreach(Particle p in sphere(10.0)){

10 count = count + 1;
11 energyTotal = p.energy + energyTotal;
12 }
13 avgEnergy = energyTotal/count;
14 stabilize;
15 }
16 }

Figure 3-9: A snippet of code showing how to access strand state information
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3.2 Global Communication

As mentioned earlier, strands may want to interact with a subset of strands. The idea of this com-

munication mechanism is based on sharing information on a larger scale within the system. Strands

can communicate with other strands regardless of where they are positioned in world space. Global

communication is performed by using common reduction operations, such such as product or

sum. Once a reduction is computed, all strands have access to that value.

3.2.1 Reductions

A general typing judgement for reductions is listed in Figure 3-10. Similar to query functions,

the set expression (e2) produces a dynamic sequence. The evaluation of e1 should have the same

type as the reduction’s return type. We currently provide eight different reduction operations. All

logical reductions (i.e., all, exists) should produce a final type of bool. The reductions: minr, maxr,

product, mean, variance and sum produce a resulting type of real. Since the judgement form of a

reduction has a type τ ′, the evaluation of e1 and (R of Γ)(r) have the same type (τ ′).

r ∈ REDUCTIONS = {all, max, min, etc..} global reductions

R ∈ REDUCTIONSENV = REDUCTIONS 7→ TYPE reduction environment

Γ = (...× REDUCTIONSENV) typing environment

Γ ` e2 : τ{} (ψ of Γ)[x 7→ τ ] ` e1 : τ ′ (R of Γ)(r) = τ ′

Γ ` r{e1 | x in e2} : τ ′

Figure 3-10: Typing judgment for reduction operations

Figure 3-11 illustrates the syntax of a global operation in Diderot. The expression e has strand

scope. Only strand state variables can be used in e. The variable x is assigned to each strand state

within the set t. It can be used within the expression e to gain access to state variables. The set t

can contain all active strands, all stable strands, or both active and stable strands for an iteration.

Syntactically, if a strand P was defined then a program can retrieve the sets as follows: P.active

(all active Ps), P.stable (all stable Ps), or P.all (for both active and stable Ps).
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t ::= N.all strand sets
| N.active
| N.stable

e ::= ... previously defined expressions
| r{e | x in t} reduction statement

Figure 3-11: Syntax of a global reduction

3.2.2 Operational Meanings

Table 3.1 provides a detailed description of each reduction in Diderot. The table gives both the

syntax and semantical meanings for each reduction.

Table 3.1: Semantical meanings for each reduction operation

Reduction Semantics Identity
all For each strand, S, in the set t compute the value e and

return TRUE if all the e values in t evaluate to TRUE, oth-
erwise FALSE.

true

maxr For each strand, S, in the set t compute the value e and
return the maximum e value from the set s.

−∞

minr For each strand, S, in the set t compute the value e and
return the minimum e value from the set t.

+∞

exists For each strand, S, in the set t compute the value e and
return TRUE if any one of the e values in t evaluate to
TRUE, otherwise FALSE.

false

product For each strand, S, in the set t compute the value e and
return the product of all the e values in t.

1

sum For each strand, S, in the set t compute the value e and
return the sum of all the e values in t.

0

mean For each strand, S, in the set t compute the value e and
return the mean of all the e values in t.

0

variance For each strand, S, in the set t compute the value e and
return the variance of the e values in t.

0

3.2.3 The Global Block

The reduction operations reside in a new definition block called global. The global reduction

variables are assigned to their reduction operation inside this block. Before the addition of global

communication, global variables were immutable but now they can be modified within this block.

Figure 3-12 shows the addition of the global block to a program’s definition.
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g ∈ GLOBALBLOCK global block definition

g ::= {s}

p ::= D;S; g; i

Figure 3-12: Syntax of the global block

3.2.4 Finding the Maximum Energy Example

The code in Figure 3-13 shows an example of using global communication. The program finds the

maximum energy from all active and stable strands. The code loads energies from a file (line 1)

and assigns each strand an energy value (line 4). Inside the global block (Lines 15-17), the maxr

reduction is used to find the maximum energy in the set. Inside the update method, each strand

checks to see if their energy is the maximum energy and the strand with the maximum energy prints

it out.

1 int{} energies = load("energies.nrrd");
2 int nEnergies= length(args);
3 real maxEnergy = -∞;
4 int iter = 1;
5 strand Particle (real initEnergy) {
6 real energy = initEnergy;
7 update {
8 if(maxEnergy == energy)
9 print(maxEnergy);

10 if(iter > 2)
11 stabilize;
12 }
13 }
14
15 global {
16 maxEnergy = maxr{P.energy | P in Particle.all};
17 iter +=1;
18 }
19 initially [ Particle(energies(vi)) | vi in 0..(nEnergies-1)];

Figure 3-13: Retrieves the maximum of the program

3.3 Strand State Values

When accessing a state variable, the value returned is the value assigned from the previous iteration.

Recall that Diderot uses a bulk synchronous model of execution. In this model, strands are executed

in parallel steps; therefore, strands can potentially be updating their state at different times, which

may lead to nondeterministic results if accessed by another strand. For example, if a Strand A is
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accessing a Strand B’s state while Strand B is updating it then it is unknown if the state Strand A

receives is the old or updated state. Thus, strands will access the values computed from the previous

super-step. Figure 3-14 diagrams an example of using the previous iteration’s strand values. The top

green boxes represent the strand state variables for a Strand A and Strand B after Iteration i. During

an iteration, the strand state variables energy and pos are updated before executing the foreach

statement in the update function. Assuming there are only two strands running, the strands retrieve

each other’s energy values (i.e., nEnergy) within the foreach block. But the values assigned are

from iteration i and not iteration i + 1. This result is shown in the bottom green boxes. Furthermore,

querying functions also use the pos values from the previous iteration. Thus, the querying function,

sphere, will use the values {2.0, 3.0} for Strand A and {3.0, 4.0} for Strand B as their positions.

    energy = energy + 2; 
    pos = pos + {2.0, 4.0)}; 
    foreach(Particle p in sphere(2.0)) 
     { 
         real nEnergy = p.energy; 
     } 

    pos = {2.0,3.0} ; 
    energy = 25; 

    pos = {2.5,3.5} ; 
    energy = 30; 

Strand A Strand B

Iteration i + 1 values:

Update Function

Iteration i values:

nEnergy = 30; nEnergy = 25; 

Strand A Strand B

Figure 3-14: Illustrates the use of a strands state variables from the previous iteration and not the
current one.
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Chapter 4

Dynamic Strand Creation

The current design of Diderot limits strand creation to the initialization phase. Diderot does allow

the number of strands to vary dynamically, via its die statement, but there is no way to increase the

number of active strands in a program. Algorithms, such as particles systems, require the ability to

vary the strand population. In particular, particles tend to explore the space around them; therefore,

a new feature is needed that will dynamically creates strands instantly. For example, one of the

motivating factors for strand communication is the work being done with using particles to serves as

a representation of implicit surfaces [12]. Since the energy of a particle comes from the interactions

of its neighbors, a particle with low energy has too few neighbors, whereas a particle with high

energy has too many neighbors. The fluctuation of the system energy owed to these interactions

can potentially cause an effect on whether the system has enough energy to evenly distribute the

particles on the surface. One way to balance the system energy is to insert or delete particles, which

will increase or decrease the total system energy. This approach requires the ability to dynamically

create strands when needed.

4.1 Design

New strands can be allocated during a super-step by using a new mechanism called the new state-

ment. Figure 4-1 shows the semantics for the new statement. We retrieve the strand definition from

(∆ of Σ) in order to retrieve a fresh copy for initialization. The declarations (i.e., the state vari-

ables) is evaluated and produces a new local state. The domain of this state is the variables defined

within the static state environment of the global state, which holds the state variables defined within

a strand definition. We update the global state by assigning the new strand’s identifier to its strand
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state within the strand identifier environment η.

e ::= ... previously defined types
| new e

Σ, σ ` e ⇓ v (∆ of Σ) = strand (τ x){D;m} Σ, σ[x 7→ v] ` D ⇓ σ′ I is fresh
Σ, σ ` new e ⇓ (η of Σ)[I 7→ 〈I; active; σ′ | dom(γ of Σ); m〉]

Figure 4-1: Dynamic semantics for new statement

Figure 4-2 shows a snippet of code that uses the new statement. If a strand is wandering alone

in the world then it may want to create more strands in its neighborhood. In this case, new strands

are created by using the strand’s position plus some desired distance from the strand.

1 real d = 5.0; // desired distance of a new particle.
2 ...
3 strand Particle (real e, real x,real y) {
4 vec2 pos = [x,y];
5 update {
6 int count = 0;
7 foreach(Particle p in sphere(10.0)){
8 count = count + 1;
9 ...

10 }
11 if(count < 1) {
12 new Particle(pos + d);
13 }
14 ...
15 }
16 }

Figure 4-2: A snippet of code showing how new strands can be created.

4.2 Implementation

Strands are represented as a memory pool of their state information. Whenever a new statement is

performed we retrieve an uninitialized strand state from the memory pool. We initialize the strand

state by calling the strand’s initialization function. The new strand will begin executing in the next

iteration, which is in line with our bulk synchronous execution model. If the memory pool becomes

full then we allocate another chuck of memory for additional strand states. We use a memory pool

because allocating memory for a single strand state in the pool every time a new strand is added can

potentially decrease performance due to the allocation overhead cost.
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Chapter 5

Implementation

The addition of strand communication to the Diderot compiler produced minimal changes for the

front end and intermediate representations. But we added a significant amount of code for strand

communication to the code generation phase. In particular, implementing the spatial scheme for

spatial communication and adding a new phase to the bulk synchronous execution model for global

communication was required. In this chapter, we discuss these implementations details and choos-

ing a efficient spatial and global scheme.

5.1 Spatial Communication

When choosing a spatial scheme, it is important to consider how it affects a program’s performance.

For instance, if a Strand Q queried for its neighbors using a spherical query then a naive implemen-

tation would sequentially perform pairwise tests with the rest of the strand population to determine if

a strand lies within the sphere’s radius. For n strands, this requires: O(n2) pairwise tests. A Diderot

program can contain thousands of active strands at any given super step. This scheme can become

too expensive even with a moderate number of strands due to the quadratic complexity. Ericson et

al. [6] suggest using schemes that divide world space into two phases. A broad phase separates

strands that may be near each other into smaller regions called cells and excludes those far way.

The narrow phase then performs the pairwise tests on the strands within each cell. This approach is

called spatial partitioning and it can significantly increase performance. Now a spherical query can

limit itself to cells that only lie within its bounds, thereby reducing the number of pairwise tests.

Thus, choosing an effective spatial scheme is important for producing much faster results.

29



5.1.1 Uniform Grids

We use a uniform grid as our spatial subdivision scheme [8]. The grid effectively overlays world

space by dividing it into grid cells of equal size. Each strand is associated with the cell that covers it.

A strand’s cell can be calculated in constant time because of the uniformity of the grid. The applica-

tion’s domain window, grid dimensions and cell sizes are determined by the programmer. These pa-

rameters are set by declaring the global variables qWinDim, qGridDim and qCellSize, which

are required when using query functions. The types of these variables depend on the type of the pos

variable declared in the strand definition. For example, if the position variable is declared to have

type vec2 then the qGridDim and qCellSize will both have type vec2. The window size

represents the x-axis’s minimum and maximum values and the y-axis’s minimum and maximum

values (and z-axis’s minimum and maximums for the 3D case). Figure 5-1 shows an example of

performing a spherical query on a two-dimensional grid. If Strand H queries for its nearest neigh-

bors with a radius of four units then the query first determines the boundary of its search. Since the

cell dimension is four units by fours units and the search radius is four units then the boundary of

the search is defined within the dotted red area. The query covers at least the length of the radius.

If the radius was eight units then the boundary would be extended by one in each direction. Only

cells defined within the bounds of the query are pairwise tested with the querying strand. In this

example, the Strands I, J, G and D are pairwise tested with H’s position to determine if they qualify

as neighbors. If a strand is a neighbor it is added to this sequence of neighbors, which is returned to

the querying strand.
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qGridDim = [6,6]
qCellDim = [4,4]
qWinDim = [0,24,0,24]  // [XMIN, 
                                                      XMAX, 
                                                      YMIN, 
                                                      YMAX]

r

r = 4
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Figure 5-1: An example of performing a spherical query on a 6x6 uniform grid. The width and
height of a cell has a length of four. If Strand H performs a spherical query with radius four units
then query is defined with the dotted red area. Pairwise tests will only be performed on Strands J,
G,D, and I to check if they are valid neighbors.

5.1.2 Clamping Strands to the Grid

Diderot strands are defined within an unbounded world space. In order to implement an unbounded

grid we would need an infinite memory space, which is impossible. Our solution to this problem

involves clamping wondering strands that are outside the grid dimensions to the boundary cells

of the grid. Once we determined our grid dimensions, we extend the dimensions by one in each

direction. This creates a border around the main grid for strands that lie outside the actual grid

dimensions. Figure 5-2 shows four greyed out strands that lie outside the grid space. We look at

their world position and simply clamp them to their corresponding boundary cell within the grid.

We chose the clamping mechanism because of its simple implementation and because the clamping

is performed in constant time.
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Figure 5-2: Clamping strands to the edge cells of the grid

5.2 Global Communication

Global computations occur after each iteration in a new phase called the global phase. During this

phase, the actual reduction gets computed. Figure 5-3 depicts the addition of the global phase to

our bulk-synchronous model. In this example, each strand has a state variable called energy. After

a super-step, the global phase computes the average of energy (i.e., the mean reduction) across all

active and stable strands. Only global variables can be assigned to reductions inside the global

definition block. The global variable assigned to the reduction can then be accessed within the

update function of a strand definition.
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gMean = mean{ S.energy | S in Particle.all}; 

real energy; real energy; real energy;

…
if(energy <= gMean) {
     stabilize; 
}
….

…
if(energy <= gMean) {
     stabilize; 
}
….

…
if(energy <= gMean) {
     stabilize; 
}
….

gMean = mean{ S.energy | S in Particle.all}; 

... ... ...

Global Phase:

Strand State:

Update
Method:

Figure 5-3: Shows how the global phase works within the bulk-synchronous model.
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Chapter 6

Performance Evaluation

With the addition of these new communication mechanisms to our programming model, we are

interested in how they affect an application’s performance. In this chapter, we present results from

two benchmarks that use our strand communication system. Our test machine is a Macbook Pro

with a 2.67 GHz quad-core Intel Core i7 processor and 8Gb of memory running Mac OS X 10.7.3.

For each benchmark, we report the average of 30 runs on a lightly-loaded machine. In this chapter,

a description of each benchmark is presented, followed by a summary of the results.

6.1 Benchmark: Boids

Craig Reynolds designed an algorithm to simulate the flocking behavior of various species [17].

Flocking comes from the practice of birds flying or foraging together in a group. A flock is similar

to groups of other animals, such as shoaling of fish, or swarming of insects. Reynolds developed a

program called Boids that simulates local agents (i.e., boids) that move according to three simple

rules: separation, alignment, and cohesion. Diderot code that implements this algorithm is shown

in Figure 6-1. Each boid is given an initial position and velocity (Lines 14-15) and then queries for

its neighbors (Line 24). We then compute the vectors that represent the three rules of the algorithm.

The separation rule requires boids to avoid colliding with neighboring boids by applying a short

range repulsion to maintain an adequate distance (Lines 30-33, Lines 42-44). The alignment rule

states that each boid steers towards the average heading of its surrounding boids (Lines 28, 39).

Finally, the cohesion rule implies that a boid move towards the average position of neighboring

boids (Lines 27, 38). These rules are used to update a boid’s position and velocity (Lines 48-52)

and illustrate a realistic way a flock would move in a real-world environment.
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1 input int width;
2 input int height;
3 real queryRadius = 50;
4 int DESIRED_SEPARTION = 30;
5 ...
6
7 real cellSize=queryRadius;
8 vec4 qWinDim = [0,width,height,0];
9 vec2 qGridDim = [ floor(width/cellSize) ,floor(height/cellSize)];

10 vec2 qCellDim = [cellSize,cellSize];
11
12 strand Boid(real vx, real vy, real px, real py) {
13
14 vec2 pos = [px,py];
15 vec2 vel = [vx,vy];
16
17 update {
18 vec2 cohereVec = [0.0,0.0];
19 vec2 alignVec = [0.0,0.0];
20 vec2 seperateVec = [0.0,0.0];
21 int neighorCount = 0;
22 int seperateCount = 0;
23
24 foreach(Boid neighbor in sphere(queryRadius)){
25 real d = |pos - neighbor.pos|;
26
27 cohereVec += neighbor.pos;
28 alignVec += neighbor.vel;
29
30 if(d < DESIRED_SEPARTION) {
31 seperateVec = seperateVec + (normalize(pos-neighbor.pos)/d);
32 seperateCount+=1;
33 }
34 neighorCount+=1;
35 }
36
37 if(neighorCount > 0) {
38 cohereVec /= real(neighorCount);
39 alignVec /= real(neighorCount);
40 }
41
42 if(seperateCount > 0) {
43 seperateVec /= real(seperateCount);
44 }
45
46 ...
47
48 vec2 acceleration = cohereVec + alignVec + seperateVec;
49
50 vel += acceleration;
51
52 pos += vel;
53 ...
54 }
55 }
56 ...

Figure 6-1: A Diderot program for the Boids algorithm.
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6.2 Benchmark: Unit-Circle

The unit-circle benchmark distributes particles evenly around the unit circle. A Diderot implemen-

tation is shown in Figure 6-2. This algorithm was inspired by Meyer’s work that uses a particle

system to distribute the particles on an implicit surface [12]. The idea of the algorithm is to min-

imize the potential energy associated with particle interactions. Each particle is given an initial

random position on the unit circle and has an energy associated with it (Lines 17-18). The energy

at position pi is due to the proximity of a nearby neighbor, pj :

Ei =
∑

j φ(|rij |) (Line 32)

where rij = pi − pj (Line 29) and φ is an energy function that states the potential around a single

particle. The potential of a particle is due to distance between pi and pj , which is |rij |. The force

Fi felt at pi is the negative gradient of energy:

Fi = −
∑

j φ
′(|rij |)dij (Line 33)

where the derivative is with respect to pi and dij is the unit-length direction from particle j to i

(Line 30). A particle’s position is then updated based on this repulsive force Fi:

pi+ = h ∗ Fi (Line 38)

where h is the numerical integration step size, which controls how quickly a super-step changes a

particle’s position. If there are no neighbors around a particle then new particles are created at a

desired distance (Line 40). Particles positions are continuously updated until the system reaches

convergence that is, when the particles are evenly distributed. Convergence is determined by com-

puting the standard deviation of the particle energies (Lines 44-47). If the standard deviation is

below a certain threshold (determined by the programmer) then all particles stabilize (Lines 21-23).
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1 input real rr = 0.2; // actual particle radius
2 real d = rr * 2; // desired distance for a new particle.
3 real nRadius = rr+0.0; // neighbor query radius
4 real stdev = ∞; // used to test for convergence
5 real threshold = 0.2; // covnergence threshold
6 ...
7
8 vec2 xDom = [-1,1];
9 vec2 yDom = [-1,1];

10 real xSamples = floor((xDom[1] - xDom[0])/RR);
11 real ySamples = floor((yDom[1] - yDom[0])/RR);
12 vec4 qWinDim = [xDom[0],xDom[1],yDom[0],yDom[1]];
13 vec2 qGridDim = [xSamples,ySamples];
14 vec2 qCellDim = [RR,RR];
15
16 strand Particle (real posx, real posy) {
17 output vec2 pos = normalize([posx,posy]);
18 real energy = 0;
19 update {
20
21 if(stdev <= threshold) {
22 stabilize;
23 }
24
25 energy = 0;
26 vec2 force = [0,0];
27
28 foreach (Particle p_j in sphere(RR)) {
29 vec2 r_ij = (pos - p_j.pos)/rr;
30 vec2 d_ij = normalize(r_ij);
31 if (|r_ij| < 1) {
32 energy += (1 - |r_ij|)ˆ4;
33 force += - (-4*(1 - |r_ij|)ˆ3) * d_ij;
34 }
35 }
36 if (energy > 0.0) { // we have neighbors
37 ...
38 pos = normalize(pos + hh*force);
39 }else {
40 new Particle(pos[0] + d, pos[1] + d);
41 }
42 }
43 }
44 global{
45 real var = variance{P.energy | P in Particle.all};
46 stdev = sqrt(var);
47 }
48 ...

Figure 6-2: A Diderot program for evenly distributing particles around a unit circle.
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6.3 Benchmark Results

Figure 6-3 and Figure 6-5 show the runtime of the boids and unit-circle benchmarks with various

numbers of strands. The factor that significantly affects the performance of both benchmarks is the

grid’s cell size, as one would expect when using a uniform grid as a spatial scheme. As we increase

the cell size above the query radius, the execution time also increases. This result is plausible be-

cause as the grid cell size increases there are fewer grid cells and each cell has a larger number

of strands. Thus, as the cell size increases the querying execution time approaches the worst-case

scenario of the all-pairs test. Similarly, when the cell size decreases below the query radius, the

execution time increases, because the query checks a larger number of cells. To support this anal-

ysis, Figure 6-4 and Figure 6-6 show how many strands are tested on average per iteration. With

smaller cell sizes, fewer strands are tested and performance is affected because of the overhead of

searching through a larger number of cells, rather than pairwise testing a large number of strands.

When cell sizes are larger, more strands are pairwise tested, resulting in longer execution times.

Choosing a grid cell size to be at or around the query radius achieves the best performance in these

benchmarks because the query’s boundary contains a smaller number of cells to check. Ultimately,

the performance of a uniform grid scheme depends on choosing the optimal grid cell. If the optimal

grid cell size is unknown then choosing it to be near the query radius achieves the best performance,

as indicated from our results.
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Figure 6-3: Boids benchmark with the cell size variation

0	



100	



200	



300	



400	



500	



600	



700	



800	



900	



1000	



1100	



1	

 5	

 10	

 20	

 80	

 100	

 160	



Av
er

ag
e 

N
um

be
r o

f S
tr

an
ds

 T
es

te
d 

(p
er

 It
er

at
io

n)
	



Cell Size	



Boids - Cell Size vs Avg. Number of Strands Tested	


(1,000 Iterations, Query Radius = 20,  qWinDim = 800x600)	



1200	


1400	


1600	


1800	


2200	


2600	



Figure 6-4: Boids benchmark showing the average number of strands tested per iteration
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Figure 6-5: Unit Circle benchmark with the cell size variation
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Figure 6-6: Unit Circle benchmark showing the average number of strands tested per iteration
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6.4 Strand Allocation

The unit-circle benchmark also demonstrates our strand allocation mechanism. As mentioned ear-

lier, a new strand can be allocated at some desired distance. Figure 6-7 shows images that represent

the history of strand angles as they move around the unit circle per iteration. Initially, the strands are

significantly repelling each other, which is producing the ”scattering” effect seen in the image. Af-

ter a number of iterations, the strands start to evenly distribute themselves on the unit-circle, which

decreases the amount their angles increase by per iteration. This effect is seen as a ”jittering” line in

the image because there are fewer interactions. In this example, a new strand is allocated at iteration

140, which is shown in the last two images of Figure 6-7.
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(a) The history of strand angles without creating a new strand.

(b) An example of creating a new strand at iteration 140.

(c) A zoomed-in image of a new neighbor being allocated.

Figure 6-7: The images show the history of strand angles as they move around the unit-circle per
iteration.
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Chapter 7

Related Work

The work presented in this paper is novel to the area of visualization and image analysis languages.

Currently, we are unaware of any other languages that provide these mechanisms of communication.

Although, the concepts of spatial and global communication are studied in various other research

fields.

The ideas behind spatial communication in Diderot was influenced by previous works that use

agent-based models [9]. These models use simulations based on local interactions of agents in an

environment. These agents can represent variety of different objects such as: plants, animals, or

autonomous characters in games. With regards to spatial communication, we explored models that

are spatially explicit in their nature (i.e., agents are associated with a location in geometric space).

As described in the previous chapter, the boids simulation is an example of an spatially explicit

environment. The boids simulation influenced our spatial communication design in regards to how

it retrieved its neighbors. When boids are searching for neighboring boids, they are essentially

performing a query similar to our queries in Diderot. In particular, they are performing a circle query

that encapsulates the querying boid and any nearby boids bounded within a circle. However, our

query performs much faster because we use spatial binning to retrieve neighbors, while Reynold’s

query runs in O(n2) because it requires each boid to be pairwise tested with all other boids.

Agent-based models are used in various scientific fields, especially in an ecological simulation.

For example, Benes, Cordoba, and Soto [1] developed a plant ecological simulation that uses agents

that interact with the plants and other agents based on their geometric locations. The ecosystem

is represented as a homogenous continuous area where plants are competing between the same

species and other species. Plants species die or experience grow due to conditions in the system or
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plant resources (e.g. food). The agents are responsible for eliminating weeds, removing incorrectly

placed plants, or old plants. Each agent maintains a small memory queue that stores the various

tasks an agent needs to accomplish. If an agent experiences an overflow of tasks in its queue, it

communicates with the closest agents to synchronize their tasks (i.e., exchange or relieve tasks to

each other).

A significant contribution of this work is the idea of allowing agents to share their data with

other agents. The exchanging of agent information (i.e., tasks) in the plant simulation is a similar

to how we exchange strand state information between strands. Agents within the plant simulation

can share tasks amongst each other, which is how strands can retrieve state variables from their

neighbors. In the plant simulation, the agents are bounded by a certain number of tasks it can hold

within their local memory, whereas in Diderot, strands can maintain large amounts of strand state

information.

Agent interactions have also been modeled using interprocess communication systems [13] and

computer networks [20]. In these models, processes or nodes can send and receive messages (i.e.,

data or complex data structures that represent tasks) to other processes. Once agents are mapped to

processes, they then can use the messaging protocol defined by the system to query about nearby

agents or exchange state information with each other. However, this process requires an applica-

tion to explicitly adapt or layer its spatial communication model to work within these systems. In

Diderot, there is only an implicit notion that strands are defined within a geometric space and one

uses query functions to retrieve state information of neighboring strands, which differs from the

layering requirement needed for these other communication systems.

The execution of global reductions in Diderot is similar to the MapReduce model developed

by Dean and Ghemawat [4]. MapReduce is a programming model used to process parallelizable

problems that use large data sets. The model is typically implemented on clusters in a distributed

computing environment. The framework is split into two major steps, which are operated by a

master node (i.e., a computer). The first step is called Map. In this step, the master node takes in the

input data and divides it into smaller sub-problems. It then distributes the sub-problems to worker

nodes. A worker node processes a sub-problem and passes the result back to the master node.

The last step is called Reduce. In the Reduce step, the master node retrieves all the results from

the worker nodes and combines them in a particular way (defined by the programmer) to produce

an output. Many data parallel languages have supported parallel map-reduce, such as the NESL

language [2], which has also influenced our design of global reductions.
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In Diderot, we also spilt a reduction calculation into two parts similar to MapReduce. Our global

block allows reductions to be mapped to global variables. In essence, this global variable represents

the key for the reduction calculation. The actual reduction calculation (i.e., the value) is calculated

in the global phase. After each super-step, the global phase (i.e., our ”reduce” step) executes the

global block, which performs the actual computation for each reduction.

The MapReduce model has inspired new languages that provide simple mechanisms to use and

build its underlying framework. Researchers at Yahoo developed a platform called Pig [15], which

produces sequences of MapReduce programs using predefined implementations from the Hadoop

project [21]. The language of the Pig infrastructure is called Pig latin. The language abstracts away

the Java MapReduce idiom and provides a notation that is easier to use while working with a large

data sets. Another example is the language Sawzall developed by researchers at Google Inc. [16].

Sawzall is a DSL used to process large numbers of individual log records. Writing a MapReduce

program that analyzes these records can be a time-consuming task but with the simple notation

of Sawzall the program becomes much easier to implement. Sawzall programs are only executed

in the Map phase of the MapReduce model. This phase process one record at a time to produce

intermediate values (i.e.integers, strings, tuples, etc.) that are combined with values from other

records. The reduce takes in these intermediate results and are further processed by aggregators,

which collect and reduce the intermediate values to create the final results. The reduce phase is

handled automatically without the need for the programmer’s input. The programmer only needs to

worry about the script being processed by the Map phase.

Both these languages allow researchers to focus solely on their algorithms rather than the un-

derlying implementation details of how their data will be processed. Pig and Sawzall produce the

MapReduce programs based on the simple scripts their users provide. This concept is also one of

the major goals of Diderot. We want to allow researchers to focus on implementing their algorithms

quickly and efficiently without worrying about the implementation details. Similar to the straight

forward notation Pig and Sawzall provide to their users, we also support a simple set notation that

many researchers are already accustomed to using. They do not need to worry about lifting the re-

ductions into a different phase (i.e., the global phase), this work is all done by the Diderot compiler.
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Chapter 8

Future Work

8.1 Hierarchical data structures

When using query functions, the programmer is required to set the cell size for the uniform grid.

One of the most significant problems with uniform grids is their performance depends on choosing

an appropriate cell size. If the cells are too small then the query will have to search many cells,

which will degrade performance. If the cells are too large, then there will be many objects in each

cell, which can deteriorate to the all-pairs test. Thus, we can improve on our implementation by

providing additional spatial schemes that deal with various cell sizes. In particular, Ericson [6]

describes using hierarchal grids or tree based representations, such as octrees and quadtrees, as one

way to handle this problem because the cell sizes only change as you divide up the environment

space.

8.2 Additional Query Functions

Currently we only support a limited number of query functions. We plan to provide additional

query functions such as ellipsoidal and hexagonal, to bring more diversity to the options researchers

can use within their algorithms. We also are exploring the ability to support abstraction spatial

relationships. For example, defining a query to retrieve the 26-neighbors in a 3D grid, or support

mesh based methods, where a strand corresponds to a triangle in a finite-element mesh. Query

functions are the basis behind spatial communication in Diderot, so allowing for various query

options gives a larger range in the types of algorithms we can support.
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8.3 Strand Communication for our Parallel Targets

Our parallel targets (Pthreads and GPUs) need strand communication implementations. Our Pthread

target benefits from using the C language and libraries, which provide common synchronization and

allocation mechanisms. However, our GPU implementation of strand communication poses a more

difficult challenge. GPUs are not as flexible in terms of allocating memory dynamically, which can

only be done on the host side device. This restriction means if we want to create strands dynam-

ically we have to transfer to the host side, allocate a memory pool on the GPU device, and then

transfer back to the GPU to perform the initialization of the strand state. Performing this process

can incur a large overhead cost; therefore, deciding the appropriate time and how much to allocate

is important to consider. Furthermore, the GPU has a limited amount of memory available for a

program in comparison to the virtual memory environment on the host side device. With having

various components of a Diderot program being allocated on the GPU (i.e., strand state informa-

tion, spatial grid meta information, GPU scheduler information, and potential image data), we can

potentially run out of memory on the device. If this happens then we may need to come up with a

scheme that offloads certain components to the CPU and load only the data that is need for a given

iteration. These complications need to be considered when implementing strand communication on

the GPU.
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Chapter 9

Conclusion

Diderot limited itself by only providing features for autonomous strand computations, which ex-

cluded other algorithms of interest, such as particle systems. These algorithms require additional

communication mechanism to be implemented within the language. Figure 9-1 shows our updated

parallelism model with our new communication mechanisms. We provided a spatial mechanism that

allows strands to read state information from nearby strands based on predefined query functions.

A global mechanism was added to allow strands to share state information with large set of strands.

This process is done by using common reduction operations that are defined within the global block

of a program. After a super-step the global block is computed by the global phase within our par-

allelism model. Finally, we provide a mechanism for dynamically generating new strands, which

will begin executing in the next super-step. The evaluation of our communication system showed

that application can execute faster because of our builtin uniform grid scheme, which can look at a

smaller area for retrieving local neighbors than the worst case scenario of the all-pairs test.
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